96 research outputs found
LHC phenomenology of dark matter with a color-octet partner
Colored dark sectors where the dark matter particle is accompanied by colored partners have recently attracted theoretical and phenomenological interest. We explore the possibility that the dark sector consists of the dark matter particle and a color-octet partner, where the interaction with the Standard Model is governed by an effective operator involving gluons. The resulting interactions resemble the color analogues of electric and magnetic dipole moments. Although many phenomenological features of this kind of model only depend on the group representation of the partner under SU(3)c, we point out that interesting collider signatures such as R-hadrons are indeed controlled by the interaction operator between the dark and visible sector. We perform a study of the current constraints and future reach of LHC searches, where the complementarity between different possible signals is highlighted and exploited
The NANOGrav 15 yr Data Set: Search for Transverse Polarization Modes in the Gravitational-wave Background
\ua9 2024. The Author(s). Published by the American Astronomical Society.Recently we found compelling evidence for a gravitational-wave background with Hellings and Downs (HD) correlations in our 15 yr data set. These correlations describe gravitational waves as predicted by general relativity, which has two transverse polarization modes. However, more general metric theories of gravity can have additional polarization modes, which produce different interpulsar correlations. In this work, we search the NANOGrav 15 yr data set for evidence of a gravitational-wave background with quadrupolar HD and scalar-transverse (ST) correlations. We find that HD correlations are the best fit to the data and no significant evidence in favor of ST correlations. While Bayes factors show strong evidence for a correlated signal, the data does not strongly prefer either correlation signature, with Bayes factors ∼2 when comparing HD to ST correlations, and ∼1 for HD plus ST correlations to HD correlations alone. However, when modeled alongside HD correlations, the amplitude and spectral index posteriors for ST correlations are uninformative, with the HD process accounting for the vast majority of the total signal. Using the optimal statistic, a frequentist technique that focuses on the pulsar-pair cross-correlations, we find median signal-to-noise ratios of 5.0 for HD and 4.6 for ST correlations when fit for separately, and median signal-to-noise ratios of 3.5 for HD and 3.0 for ST correlations when fit for simultaneously. While the signal-to-noise ratios for each of the correlations are comparable, the estimated amplitude and spectral index for HD are a significantly better fit to the total signal, in agreement with our Bayesian analysis
How to Detect an Astrophysical Nanohertz Gravitational Wave Background
\ua9 2023. The Author(s). Published by the American Astronomical Society.Analyses of pulsar timing data have provided evidence for a stochastic gravitational wave background in the nanohertz frequency band. The most plausible source of this background is the superposition of signals from millions of supermassive black hole binaries. The standard statistical techniques used to search for this background and assess its significance make several simplifying assumptions, namely (i) Gaussianity, (ii) isotropy, and most often, (iii) a power-law spectrum. However, a stochastic background from a finite collection of binaries does not exactly satisfy any of these assumptions. To understand the effect of these assumptions, we test standard analysis techniques on a large collection of realistic simulated data sets. The data-set length, observing schedule, and noise levels were chosen to emulate the NANOGrav 15 yr data set. Simulated signals from millions of binaries drawn from models based on the Illustris cosmological hydrodynamical simulation were added to the data. We find that the standard statistical methods perform remarkably well on these simulated data sets, even though their fundamental assumptions are not strictly met. They are able to achieve a confident detection of the background. However, even for a fixed set of astrophysical parameters, different realizations of the universe result in a large variance in the significance and recovered parameters of the background. We also find that the presence of loud individual binaries can bias the spectral recovery of the background if we do not account for them
The NANOGrav 15 yr Data Set: Running of the Spectral Index
\ua9 2025. The Author(s)The NANOGrav 15 yr data provide compelling evidence for a stochastic gravitational-wave (GW) background at nanohertz frequencies. The simplest model-independent approach to characterizing the frequency spectrum of this signal consists of a simple power-law fit involving two parameters: an amplitude A and a spectral index γ. In this Letter, we consider the next logical step beyond this minimal spectral model, allowing for a running (i.e., logarithmic frequency dependence) of the spectral index, grun (f ) = g + b ln (f /fref ). We fit this running-power-law (RPL) model to the NANOGrav 15 yr data and perform a Bayesian model comparison with the minimal constant-power-law (CPL) model, which results in a 95% credible interval for the parameter β consistent with no running, b \uce [-0.80, 2.96], and an inconclusive Bayes factor, B(RPL versus CPL) = 0.69 \ub1 0.01. We thus conclude that, at present, the minimal CPL model still suffices to adequately describe the NANOGrav signal; however, future data sets may well lead to a measurement of nonzero β. Finally, we interpret the RPL model as a description of primordial GWs generated during cosmic inflation, which allows us to combine our results with upper limits from Big Bang nucleosynthesis, the cosmic microwave background, and LIGO–Virgo–KAGRA
The NANOGrav 15 Yr Data Set: Removing Pulsars One by One from the Pulsar Timing Array
\ua9 2025. The Author(s). Published by the American Astronomical Society. Evidence has emerged for a stochastic signal correlated among 67 pulsars within the 15 yr pulsar-timing data set compiled by the NANOGrav collaboration. Similar signals have been found in data from the European, Indian, Parkes, and Chinese pulsar timing arrays. This signal has been interpreted as indicative of the presence of a nanohertz stochastic gravitational-wave background (GWB). To explore the internal consistency of this result, we investigate how the recovered signal strength changes as we remove the pulsars one by one from the data set. We calculate the signal strength using the (noise-marginalized) optimal statistic, a frequentist metric designed to measure the correlated excess power in the residuals of the arrival times of the radio pulses. We identify several features emerging from this analysis that were initially unexpected. The significance of these features, however, can only be assessed by comparing the real data to synthetic data sets. After conducting identical analyses on simulated data sets, we do not find anything inconsistent with the presence of a stochastic GWB in the NANOGrav 15 yr data. The methodologies developed here can offer additional tools for application to future, more sensitive data sets. While this analysis provides an internal consistency check of the NANOGrav results, it does not eliminate the necessity for additional investigations that could identify potential systematics or uncover unmodeled physical phenomena in the data
The NANOGrav 15 yr Data Set: Search for Gravitational-wave Memory
\ua9 2025. The Author(s). Published by the American Astronomical Society.We present the results of a search for nonlinear gravitational-wave (GW) memory in the NANOGrav 15 yr data set. We find no significant evidence for memory signals in the data set, with a maximum Bayes factor of 3.1 in favor of a model including memory. We therefore place upper limits on the strain of potential GW memory events as a function of sky location and observing epoch. We find upper limits that are not always more constraining than previous NANOGrav results. We show that it is likely due to the increase in common red noise between the 12.5 and 15 yr NANOGrav data sets
Comparing recent PTA results on the nanohertz stochastic gravitational wave background
The Australian, Chinese, European, Indian, and North American pulsar timing
array (PTA) collaborations recently reported, at varying levels, evidence for
the presence of a nanohertz gravitational wave background (GWB). Given that
each PTA made different choices in modeling their data, we perform a comparison
of the GWB and individual pulsar noise parameters across the results reported
from the PTAs that constitute the International Pulsar Timing Array (IPTA). We
show that despite making different modeling choices, there is no significant
difference in the GWB parameters that are measured by the different PTAs,
agreeing within . The pulsar noise parameters are also consistent
between different PTAs for the majority of the pulsars included in these
analyses. We bridge the differences in modeling choices by adopting a
standardized noise model for all pulsars and PTAs, finding that under this
model there is a reduction in the tension in the pulsar noise parameters. As
part of this reanalysis, we "extended" each PTA's data set by adding extra
pulsars that were not timed by that PTA. Under these extensions, we find better
constraints on the GWB amplitude and a higher signal-to-noise ratio for the
Hellings and Downs correlations. These extensions serve as a prelude to the
benefits offered by a full combination of data across all pulsars in the IPTA,
i.e., the IPTA's Data Release 3, which will involve not just adding in
additional pulsars, but also including data from all three PTAs where any given
pulsar is timed by more than as single PTA.Comment: 21 pages, 9 figures, submitted to Ap
Comparing Recent Pulsar Timing Array Results on the Nanohertz Stochastic Gravitational-wave Background
The Australian, Chinese, European, Indian, and North American pulsar timing array (PTA) collaborations recently reported, at varying levels, evidence for the presence of a nanohertz gravitational-wave background (GWB). Given that each PTA made different choices in modeling their data, we perform a comparison of the GWB and individual pulsar noise parameters across the results reported from the PTAs that constitute the International Pulsar Timing Array (IPTA). We show that despite making different modeling choices, there is no significant difference in the GWB parameters that are measured by the different PTAs, agreeing within 1σ. The pulsar noise parameters are also consistent between different PTAs for the majority of the pulsars included in these analyses. We bridge the differences in modeling choices by adopting a standardized noise model for all pulsars and PTAs, finding that under this model there is a reduction in the tension in the pulsar noise parameters. As part of this reanalysis, we "extended" each PTA's data set by adding extra pulsars that were not timed by that PTA. Under these extensions, we find better constraints on the GWB amplitude and a higher signal-to-noise ratio for the Hellings–Downs correlations. These extensions serve as a prelude to the benefits offered by a full combination of data across all pulsars in the IPTA, i.e., the IPTA's Data Release 3, which will involve not just adding in additional pulsars but also including data from all three PTAs where any given pulsar is timed by more than a single PTA
The NANOGrav 12.5-year data set: A computationally efficient eccentric binary search pipeline and constraints on an eccentric supermassive binary candidate in 3C 66B
The radio galaxy 3C 66B has been hypothesized to host a supermassive black
hole binary (SMBHB) at its center based on electromagnetic observations. Its
apparent 1.05-year period and low redshift () make it an interesting
testbed to search for low-frequency gravitational waves (GWs) using Pulsar
Timing Array (PTA) experiments. This source has been subjected to multiple
searches for continuous GWs from a circular SMBHB, resulting in progressively
more stringent constraints on its GW amplitude and chirp mass. In this paper,
we develop a pipeline for performing Bayesian targeted searches for eccentric
SMBHBs in PTA data sets, and test its efficacy by applying it on simulated data
sets with varying injected signal strengths. We also search for a realistic
eccentric SMBHB source in 3C 66B using the NANOGrav 12.5-year data set
employing PTA signal models containing Earth term-only as well as Earth+Pulsar
term contributions using this pipeline. Due to limitations in our PTA signal
model, we get meaningful results only when the initial eccentricity
and the symmetric mass ratio . We find no evidence for an eccentric
SMBHB signal in our data, and therefore place 95% upper limits on the PTA
signal amplitude of ns for the Earth term-only and
ns for the Earth+Pulsar term searches for . Similar 95%
upper limits on the chirp mass are and
. These upper limits, while less
stringent than those calculated from a circular binary search in the NANOGrav
12.5-year data set, are consistent with the SMBHB model of 3C 66B developed
from electromagnetic observations.Comment: 27 Pages, 10 Figures, 1 Table, Accepted for publication in Ap
The NANOGrav 15-year data set: Search for Transverse Polarization Modes in the Gravitational-Wave Background
Recently we found compelling evidence for a gravitational wave background
with Hellings and Downs (HD) correlations in our 15-year data set. These
correlations describe gravitational waves as predicted by general relativity,
which has two transverse polarization modes. However, more general metric
theories of gravity can have additional polarization modes which produce
different interpulsar correlations. In this work we search the NANOGrav 15-year
data set for evidence of a gravitational wave background with quadrupolar
Hellings and Downs (HD) and Scalar Transverse (ST) correlations. We find that
HD correlations are the best fit to the data, and no significant evidence in
favor of ST correlations. While Bayes factors show strong evidence for a
correlated signal, the data does not strongly prefer either correlation
signature, with Bayes factors when comparing HD to ST correlations,
and for HD plus ST correlations to HD correlations alone. However,
when modeled alongside HD correlations, the amplitude and spectral index
posteriors for ST correlations are uninformative, with the HD process
accounting for the vast majority of the total signal. Using the optimal
statistic, a frequentist technique that focuses on the pulsar-pair
cross-correlations, we find median signal-to-noise-ratios of 5.0 for HD and 4.6
for ST correlations when fit for separately, and median signal-to-noise-ratios
of 3.5 for HD and 3.0 for ST correlations when fit for simultaneously. While
the signal-to-noise-ratios for each of the correlations are comparable, the
estimated amplitude and spectral index for HD are a significantly better fit to
the total signal, in agreement with our Bayesian analysis.Comment: 11 pages, 5 figure
- …
