16 research outputs found

    Effects of Bitter Receptor Antagonists on Behavioral Lick Responses of Mice

    Get PDF
    Bitter taste receptors TAS2Rs detect noxious compounds in the oral cavity. Recent heterologous expression studies reported that some compounds function as antagonists for human TAS2Rs. For examples, amino acid derivatives such as γ-aminobutyric acid (GABA) and Nα,Nα-bis(carboxymethyl)-L-Lysine (BCML) blocked responses to quinine mediated by human TAS2R4. Probenecid inhibited responses to phenylthiocarbamide mediated by human TAS2R38. In this study, we investigated the effects of these human bitter receptor antagonists on behavioral lick responses of mice to elucidate whether these compounds also function as bitter taste blockers. In short-term (10 s) lick tests, concentration-dependent lick responses to bitter compounds (quinine-HCl, denatonium and phenylthiourea) were not affected by the addition of GABA or BCML. Probenecid reduced aversive lick responses to denatonium and phenylthiourea but not to quinine-HCl. In addition, taste cell responses to phenylthiourea were inhibited by probenecid. These results suggest some bitter antagonists of human TAS2Rs can work for bitter sense of mouse

    The Effects of Mutual Interaction of Orexin-A and Glucagon-Like Peptide-1 on Reflex Swallowing Induced by SLN Afferents in Rats

    Get PDF
    (1) Background: Our previous studies revealed that orexin-A, an appetite-increasing peptide, suppressed reflex swallowing via the commissural part of the nucleus tractus solitarius (cNTS), and that glucagon-like peptide-1 (GLP-1), an appetite-reducing peptide, also suppressed reflex swallowing via the medial nucleus of the NTS (mNTS). In this study, we examined the mutual interaction between orexin-A and GLP-1 in reflex swallowing. (2) Methods: Sprague-Dawley rats under urethane-chloralose anesthesia were used. Swallowing was induced by electrical stimulation of the superior laryngeal nerve (SLN) and was identified by the electromyographic (EMG) signals obtained from the mylohyoid muscle. (3) Results: The injection of GLP-1 (20 pmol) into the mNTS reduced the swallowing frequency and extended the latency of the first swallow. These suppressive effects of GLP-1 were not observed after the fourth ventricular administration of orexin-A. After the injection of an orexin-1 receptor antagonist (SB334867) into the cNTS, an ineffective dose of GLP-1 (6 pmol) into the mNTS suppressed reflex swallowing. Similarly, the suppressive effects of orexin-A (1 nmol) were not observed after the injection of GLP-1 (6 pmol) into the mNTS. After the administration of a GLP-1 receptor antagonist (exendin-4(5-39)), an ineffective dose of orexin-A (0.3 nmol) suppressed reflex swallowing. (4) Conclusions: The presence of reciprocal inhibitory connections between GLP-1 receptive neurons and orexin-A receptive neurons in the NTS was strongly suggested

    Aflatoxins in Rice Artificially Contaminated with Aflatoxin-producing Aspergillus flavus under Natural Storage in Japan

    Get PDF
    Aflatoxin (AFT) contamination is frequent in foods grown in tropical regions, including rice. Although AFTs are generally not found in temperate-region foods, global warming has affected typical temperate-region climates, potentially permitting the contamination of foods with AFT-producing Aspergillus flavus (A. flavus). Here we investigated the AFT production in rice during storage under natural climate conditions in Japan. We examined AFTs in brown rice and rough rice artificially contaminated with A. flavus for 1 year in Japan, and we subjected AFTs in white rice to the same treatment in airtight containers and examined the samples in warm and cold seasons, simulating the storage of white rice in general households. In the brown rice, AFTs increased after 2 months (March) and peaked after 9 months (October). The AFT contamination in the rough rice was minimal. After the polishing and cooking of the brown rice, AFTs were undetectable. In the white rice stored in airtight containers, AFTs increased after 1 month (August) and peaked after 2 months (September). Minimal AFTs were detected in the cold season. Thus, AFT contamination in rice may occur in temperate regions following A. flavus contamination. The storage of rice as rough rice could provide be useful for avoiding AFT contamination

    Postnatal development of inhibitory synaptic transmission to superior salivatory neurons in rats

    Get PDF
    The primary parasympathetic center of the submandibular and sublingual salivary glands is the superior salivatory (SS) nucleus, and its neurons receive excitatory (glutamatergic) and inhibitory (GABAergic and glycinergic) synaptic transmissions in rats. In the present study, we focused on the postnatal development of inhibitory transmission to SS neurons. Gramicidin-perforated whole-cell patch-clamp recordings were performed in rat brainstem slices on postnatal day 2 (P2)-P14. Developmental changes in the intracellular Cl- concentration ([Cl-]in) were examined based on the reversal potentials of total inhibitory postsynaptic currents (GABAergic plus glycinergic), which were evoked by electrical stimulation near the recording neuron. The [Cl-]in in the P8-P14 groupwas significantly lower than in the P2-P7 group. The effect of GABA application at the resting potentials changed from depolarization to hyperpolarization around P8, suggesting that SS neurons acquired mature inhibitory systems around P8. The period at which GABA responses change from excitatory to inhibitory in SS neurons was discussed compared with those of the forebrain, brainstem, and spinal neurons

    Cevimeline enhances the excitability of rat superior salivatory neurons

    Get PDF
    Cevimeline, a therapeutic drug for xerostomia, is an agonist of muscarinic acetylcholine receptors (mAChRs), and directly stimulates the peripheral mAChRs of the salivary glands. Since cevimeline is distributed in the brain after its oral administration, it is possible that it affects the central nervous system. However, it is unknown how cevimeline affects the superior salivatory (SS) neurons, which control submandibular salivation. In the present study, we examined the effects of cevimeline on the SS neurons using the whole-cell patch-clamp technique in brain slices. In Wistar rats (6-10 days), the SS neurons were retrogradely labeled by Texas Red applied to the chorda-lingual nerve. Two days after injection, whole-cell recordings were obtained from the labeled cells, and miniature excitatory postsynaptic currents (mEPSCs) were examined. Cevimeline induced the inward currents dose-dependently and increased the frequency of mEPSCs. Therefore, it is suggested that cevimeline enhances the excitability via post- and presynaptic muscarinic receptors in the rat SS neurons. In conclusion, cevimeline may enhance the excitability of the SS neurons

    Immunohistochemical study on the distribution and origin of GABAergic nerve terminals in the superior salivatory nucleus

    Get PDF
    The superior salivatory nucleus (SSN) is the primary parasympathetic center controlling submandibular salivatory secretion. Our previous electrophysiological study revealed that many SSN neurons receive GABAergic and glycinergic synaptic inputs. In the present study, we examined the distribution of GABAergic and glycinergic nerve terminals, GABAA receptors in the SSN, and the origin of GABAergic nerve terminals innervating the SSN. Glutamic acid decarboxylase (GAD) and glycine transporter 2 (GLYT2) were used as markers of GABAergic and glycinergic nerve terminals, respectively. GAD- and GLYT2-positive nerve terminals and GABAA receptors were examined immunohistochemically in SSN neurons labeled by the retrograde axonal transport of FastBlue (FB) injected into the chorda-lingual nerve. The SSN neurons abundantly contained GAD-positive nerve terminals and GABAA receptors, suggesting that SSN neurons undergo strong GABAergic inhibition. The origin of GABAergic terminals was examined in neurons labeled by the retrograde transport of FluoroGold (FG) injected into the SSN. GAD was used as a marker of GABAergic neurons. Numerous FG-labeled neurons were found in the forebrain and brainstem. However, in FG-labeled neurons, GAD-positive neurons were occasionally observed in the reticular formation of the brainstem. These findings suggest that SSN neurons mainly receive GABAergic projections from the reticular formation

    Orexin A and B in the rat superior salivatory nucleus

    Get PDF
    Orexin (OX), which regulates sleep and wakefulness and feeding behaviors has 2 isoforms, orexin-A and -B (OXA and OXB). In this study, the distribution of OXA and OXB was examined in the rat superior salivatory nucleus (SSN) using retrograde tracing and immunohistochemical and methods. OXA- and OXB-immunoreactive (-ir) nerve fibers were seen throughout the SSN. These nerve fibers surrounded SSN neurons retrogradely labeled with Fast blue (FB) from the corda-lingual nerve. FB-positive neurons had pericellular OXA- (47.5%) and OXB-ir (49.0%) nerve fibers. Immunohistochemistry for OX receptors also demonstrated the presence of OX1R and OX2R in FB-positive SSN neurons. The majority of FB-positive SSN neurons contained OX1R- (69.7%) or OX2R-immunoreactivity (57.8%). These neurons had small and medium-sized cell bodies. In addition, half of FB-positive SSN neurons which were immunoreactive for OX1R (47.0%) and OX2R (52.2%) had pericellular OXA- and OXB-ir nerve fibers, respectively. Co-expression of OX1R- and OX2R was common in FB-positive SSN neurons. The present study suggests a possibility that OXs regulate the activity of SSN neurons through OX receptors

    Sugar signals from oral glucose transporters elicit cephalic-phase insulin release in mice

    Get PDF
    Abstract Cephalic-phase insulin release (CPIR) occurs before blood glucose increases after a meal. Although glucose is the most plausible cue to induce CPIR, peripheral sensory systems involved are not fully elucidated. We therefore examined roles of sweet sensing by a T1R3-dependent taste receptor and sugar sensing by oral glucose transporters in the oropharyngeal region in inducing CPIR. Spontaneous oral ingestion of glucose significantly increased plasma insulin 5 min later in wild-type (C57BL/6) and T1R3-knockout mice, but intragastric infusion did not. Oral treatment of glucose transporter inhibitors phlorizin and phloretin significantly reduced CPIR after spontaneous oral ingestion. In addition, a rapid increase in plasma insulin was significantly smaller in WT mice with spontaneous oral ingestion of nonmetabolizable glucose analog than in WT mice with spontaneous oral ingestion of glucose. Taken together, the T1R3-dependent receptor is not required for CPIR, but oral glucose transporters greatly contribute to induction of CPIR by sugars
    corecore