7 research outputs found

    MLSys: The New Frontier of Machine Learning Systems

    Get PDF
    Machine learning (ML) techniques are enjoying rapidly increasing adoption. However, designing and implementing the systems that support ML models in real-world deployments remains a significant obstacle, in large part due to the radically different development and deployment profile of modern ML methods, and the range of practical concerns that come with broader adoption. We propose to foster a new systems machine learning research community at the intersection of the traditional systems and ML communities, focused on topics such as hardware systems for ML, software systems for ML, and ML optimized for metrics beyond predictive accuracy. To do this, we describe a new conference, MLSys, that explicitly targets research at the intersection of systems and machine learning with a program committee split evenly between experts in systems and ML, and an explicit focus on topics at the intersection of the two

    Gotta go fast with score-based generative models

    No full text
    Score-based (denoising diffusion) generative models have recently gained a lot of success in generating realistic and diverse data. These approaches define a forward diffusion process for transforming data to noise and generate data by reversing it. Unfortunately, current score-based models generate data very slowly due to the sheer number of score network evaluations required by numerical SDE solvers. In this work, we aim to accelerate this process by devising a more efficient SDE solver. Our solver requires only two score function evaluations per step, rarely rejects samples, and leads to high-quality samples. Our approach generates data 2 to 10 times faster than EM while achieving better or equal sample quality. For high-resolution images, our method leads to significantly higher quality samples than all other methods tested. Our SDE solver has the benefit of requiring no step size tuning

    Deterministic Coresets for Stochastic Matrices with Applications to Scalable Sparse PageRank

    No full text
    © Springer Nature Switzerland AG 2019. The PageRank algorithm is used by search engines to rank websites in their search results. The algorithm outputs a probability distribution that a person randomly clicking on links will arrive at any particular page. Intuitively, a node in the center of the network should be visited with high probability even if it has few edges, and an isolated node that has many (local) neighbours will be visited with low probability. The idea of PageRank is to rank nodes according to a stable state and not according to the previous local measurement of inner/outer edges from a node that may be manipulated more easily than the corresponding entry in the stable state. In this paper we present a deterministic and completely parallelizable algorithm for computing an Δ -approximation to the PageRank of a graph of n nodes. Typical inputs consist of millions of pages, but the average number of links per page is less than ten. Our algorithm takes advantage of this sparsity, assuming the out-degree of each node at most s, and terminates in O(ns/Δ 2 ) time. Beyond the input graph, which may be stored in read-only storage, our algorithm uses only O(n) memory. This is the first algorithm whose complexity takes advantage of sparsity. Real data exhibits an average out-degree of 7 while n is in the millions, so the advantage is immense. Moreover, our algorithm is simple and robust to floating point precision issues. Our sparse solution (core-set) is based on reducing the PageRank problem to an l 2 approximation of the Carathéodory problem, which independently has many applications such as in machine learning and game theory. We hope that our approach will be useful for many other applications for learning sparse data and graphs. Algorithm, analysis, and open code with experimental results are provided
    corecore