36 research outputs found

    Naive bayes multi-label classification approach for high-voltage condition monitoring

    Get PDF
    This paper addresses for the first time the multilabel classification of High-Voltage (HV) discharges captured using the Electromagnetic Interference (EMI) method for HV machines. The approach involves feature extraction from EMI time signals, emitted during the discharge events, by means of 1D-Local Binary Pattern (LBP) and 1D-Histogram of Oriented Gradients (HOG) techniques. Their combination provides a feature vector that is implemented in a naive Bayes classifier designed to identify the labels of two or more discharge sources contained within a single signal. The performance of this novel approach is measured using various metrics including average precision, accuracy, specificity, hamming loss etc. Results demonstrate a successful performance that is in line with similar application to other fields such as biology and image processing. This first attempt of multi-label classification of EMI discharge sources opens a new research topic in HV condition monitoring

    AI – someone needs to know what’s going on!

    Get PDF
    When developing AI models, we must consider the cause and effect, whether the input-output relationship is meaningful, and is the relationship useful in predicting outcomes based on new data. This paper raises a crucial question about what a non-explainable vs explainable AI model means for the user and how a subject matter expert can play a critical role in AI model decision-making

    AI – someone needs to know what’s going on!

    Get PDF
    When developing AI models, we must consider the cause and effect, whether the input-output relationship is meaningful, and is the relationship useful in predicting outcomes based on new data. This paper raises a crucial question about what a non-explainable vs explainable AI model means for the user and how a subject matter expert can play a critical role in AI model decision-making

    Classification of partial discharge EMI conditions using permutation entropy-based features

    Get PDF
    In this paper we investigate the application of feature extraction and machine learning techniques to fault identification in power systems. Specifically we implement the novel application of Permutation Entropy-based measures known as Weighted Permutation and Dispersion Entropy to field Electro- Magnetic Interference (EMI) signals for classification of discharge sources, also called conditions, such as partial discharge, arcing and corona which arise from various assets of different power sites. This work introduces two main contributions: the application of entropy measures in condition monitoring and the classification of real field EMI captured signals. The two simple and low dimension features are fed to a Multi-Class Support Vector Machine for the classification of different discharge sources contained in the EMI signals. Classification was performed to distinguish between the conditions observed within each site and between all sites. Results demonstrate that the proposed approach separated and identified the discharge sources successfully

    Entropy-based feature extraction for electromagnetic discharges classification in high-voltage power generation

    Get PDF
    This work exploits four entropy measures known as Sample, Permutation, Weighted Permutation, and Dispersion Entropy to extract relevant information from Electromagnetic Interference (EMI) discharge signals that are useful in fault diagnosis of High-Voltage (HV) equipment. Multi-class classification algorithms are used to classify or distinguish between various discharge sources such as Partial Discharges (PD), Exciter, Arcing, micro Sparking and Random Noise. The signals were measured and recorded on different sites followed by EMI expert’s data analysis in order to identify and label the discharge source type contained within the signal. The classification was performed both within each site and across all sites. The system performs well for both cases with extremely high classification accuracy within site. This work demonstrates the ability to extract relevant entropy-based features from EMI discharge sources from time-resolved signals requiring minimal computation making the system ideal for a potential application to online condition monitoring based on EMI

    Classification of multiple electromagnetic interference events in high-voltage power plant

    Get PDF
    This paper addresses condition assessment of electrical assets contained in high voltage power plants. Our work introduces a novel analysis approach of multiple event signals related to faults, and which are measured using Electro-Magnetic Interference method. The proposed method transfers the expert’s knowledge on events presence in the signals to an intelligent system which could potentially be used for automatic EMI diagnosis. Cyclic spectrum analysis is used as feature extraction to efficiently extract the repetitive rate and the dynamic discharge level of the events, and multi-class support vector machine is adopted for their classification. This first and novel method achieved successful results which may have potential implications on developing a framework for automatic diagnosis tool of EMI events

    Robust deep residual shrinkage networks for online fault classification

    Get PDF

    Deep residual neural network for EMI event classification using bispectrum representation

    Get PDF
    This paper presents a novel method for condition monitoring of High Voltage (HV) power plant equipment through analysis of discharge signals. These discharge signals are measured using the Electromagnetic Interference (EMI) method and processed using third order Higher-Order Statistics (HOS) to obtain a Bispectrum representation. By mapping the time-domain signal to a Bispectrum image representations the problem can be approached as an image classification task. This allows for the novel application of a Deep Residual Neural Network (ResNet) to the classification of HV discharge signals. The network is trained on signals into 9 classes and achieves high classification accuracy in each category, improving upon our previous work on this task
    corecore