596 research outputs found
The acheulean handaxe : More like a bird's song than a beatles' tune?
© 2016 Wiley Periodicals, Inc. KV is supported by the Netherlands Organization for Scientific Research. MC is supported by the Canada Research Chairs Program, the Social Sciences and Humanities Research of Canada, the Canada Foundation for Innovation, the British Columbia Knowledge Development Fund, and Simon Fraser UniversityPeer reviewedPublisher PD
Genetic regulation of glucoraphanin accumulation in BenefortéŸ broccoli
Diets rich in broccoli (Brassica oleracea var italica) have been associated with maintenance of cardiovascular health and reduction in risk of cancer. These health beneïŹts have been
attributed to glucoraphanin that speciïŹcally accumulates in broccoli. The development of broccoli with enhanced concentrations of glucoraphanin may deliver greater health beneïŹts.
Three high-glucoraphanin F1 broccoli hybrids were developed in independent programmes through genome introgression from the wild species Brassica villosa. Glucoraphanin and other metabolites were quantiïŹed in experimental ïŹeld trials. Global SNP analyses quantiïŹed the differential extent of B. villosa introgression
The high-glucoraphanin broccoli hybrids contained 2.5â3 times the glucoraphanin content of standard hybrids due to enhanced sulphate assimilation and modiïŹcations in sulphur partitioning between sulphur-containing metabolites. All of the high-glucoraphanin hybrids possessed an introgressed B. villosa segment which contained a B. villosa Myb28 allele. Myb28
expression was increased in all of the high-glucoraphanin hybrids. Two high-glucoraphanin hybrids have been commercialised as Beneforte broccoli.
The study illustrates the translation of research on glucosinolate genetics from Arabidopsis to broccoli, the use of wild Brassica species to develop cultivars with potential consumer beneïŹts, and the development of cultivars with contrasting concentrations of glucoraphanin for use in blinded human intervention studie
A Memetic Analysis of a Phrase by Beethoven: Calvinian Perspectives on Similarity and Lexicon-Abstraction
This article discusses some general issues arising from the study of similarity in music, both human-conducted and computer-aided, and then progresses to a consideration of similarity relationships between patterns in a phrase by Beethoven, from the first movement of the Piano Sonata in A flat major op. 110 (1821), and various potential memetic precursors. This analysis is followed by a consideration of how the kinds of similarity identified in the Beethoven phrase might be understood in psychological/conceptual and then neurobiological terms, the latter by means of William Calvinâs Hexagonal Cloning Theory. This theory offers a mechanism for the operation of David Copeâs concept of the lexicon, conceived here as a museme allele-class. I conclude by attempting to correlate and map the various spaces within which memetic replication occurs
Origin of symbol-using systems: speech, but not sign, without the semantic urge
Natural languageâspoken and signedâis a multichannel phenomenon, involving facial and body expression, and voice and visual intonation that is often used in the service of a social urge to communicate meaning. Given that iconicity seems easier and less abstract than making arbitrary connections between sound and meaning, iconicity and gesture have often been invoked in the origin of language alongside the urge to convey meaning. To get a fresh perspective, we critically distinguish the origin of a system capable of evolution from the subsequent evolution that system becomes capable of. Human language arose on a substrate of a system already capable of Darwinian evolution; the genetically supported uniquely human ability to learn a language reflects a key contact point between Darwinian evolution and language. Though implemented in brains generated by DNA symbols coding for protein meaning, the second higher-level symbol-using system of language now operates in a world mostly decoupled from Darwinian evolutionary constraints. Examination of Darwinian evolution of vocal learning in other animals suggests that the initial fixation of a key prerequisite to language into the human genome may actually have required initially side-stepping not only iconicity, but the urge to mean itself. If sign languages came later, they would not have faced this constraint
Effect of Sulforaphane on NOD2 via NF-ÎșB: implications for Crohnâs disease
BACKGROUND: Sulforaphane has well established anti-cancer properties and more recently anti-inflammatory properties have also been determined. Sulforaphane has been shown to inhibit PRR-mediated pro-inflammatory signalling by either directly targeting the receptor or their downstream signalling molecules such as the transcription factor, NF-ÎșB. These results raise the possibility that PRR-mediated inflammation could be suppressed by specific dietary bioactives. We examined whether sulforaphane could suppress NF-ÎșB via the NOD2 pathway. METHODS: Human embryonic kidney 293T (HEK293T) cells were stably transfected with NOD2 variants and the NF-ÎșB reporter, pNifty2-SEAP. The cells were co-treated with sulforaphane and MDP and secreted alkaline phosphatase (SEAP) production was determined. RESULTS: We found that sulforaphane was able to significantly suppress the ligand-induced NF-ÎșB activity at physiologically relevant concentrations, achievable via the consumption of broccoli within the diet. CONCLUSIONS: These results demonstrate that the anti-inflammatory role of sulforaphane is not restricted to LPS-induced inflammatory signalling. These data add to the growing evidence that PRR activation can be inhibited by specific phytochemicals and thus suggests that diet could be a way of controlling inflammation. This is particularly important for a disease like Crohnâs disease where diet can play a key role in relieving or exacerbating symptoms
Recommended from our members
Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: evidence from randomised controlled trials
Cruciferous-rich diets have been associated with reduction in plasma LDL-cholesterol (LDL-C), which may be due to the action of isothiocyanates derived from glucosinolates that accumulate in these vegetables. This study tests the hypothesis that a diet rich in high glucoraphanin (HG) broccoli will reduce plasma LDL-C.
METHODS AND RESULTS:
One hundred and thirty volunteers were recruited to two independent double-blind, randomly allocated parallel dietary intervention studies, and were assigned to consume either 400 g standard broccoli or 400 g HG broccoli per week for 12 weeks. Plasma lipids were quantified before and after the intervention. In study 1 (37 volunteers), the HG broccoli diet reduced plasma LDL-C by 7.1% (95% CI: -1.8%, -12.3%, p = 0.011), whereas standard broccoli reduced LDL-C by 1.8% (95% CI +3.9%, -7.5%, ns). In study 2 (93 volunteers), the HG broccoli diet resulted in a reduction of 5.1% (95% CI: -2.1%, -8.1%, p = 0.001), whereas standard broccoli reduced LDL-C by 2.5% (95% CI: +0.8%, -5.7%, ns). When data from the two studies were combined the reduction in LDL-C by the HG broccoli was significantly greater than standard broccoli (p = 0.031).
CONCLUSION:
Evidence from two independent human studies indicates that consumption of high glucoraphanin broccoli significantly reduces plasma LDL-
Metabolic analysis of the interaction between plants and herbivores
Insect herbivores by necessity have to deal with a large arsenal of plant defence metabolites. The levels of defence compounds may be increased by insect damage. These induced plant responses may also affect the metabolism and performance of successive insect herbivores. As the chemical nature of induced responses is largely unknown, global metabolomic analyses are a valuable tool to gain more insight into the metabolites possibly involved in such interactions. This study analyzed the interaction between feral cabbage (Brassica oleracea) and small cabbage white caterpillars (Pieris rapae) and how previous attacks to the plant affect the caterpillar metabolism. Because plants may be induced by shoot and root herbivory, we compared shoot and root induction by treating the plants on either plant part with jasmonic acid. Extracts of the plants and the caterpillars were chemically analysed using Ultra Performance Liquid Chromatography/Time of Flight Mass Spectrometry (UPLCT/MS). The study revealed that the levels of three structurally related coumaroylquinic acids were elevated in plants treated on the shoot. The levels of these compounds in plants and caterpillars were highly correlated: these compounds were defined as the âmetabolic interfaceâ. The role of these metabolites could only be discovered using simultaneous analysis of the plant and caterpillar metabolomes. We conclude that a metabolomics approach is useful in discovering unexpected bioactive compounds involved in ecological interactions between plants and their herbivores and higher trophic levels.
Accumulation of Dietary S-Methyl Cysteine Sulfoxide in Human Prostate Tissue
Scope: Observational studies have associated consumption of cruciferous vegetables with reduced risk of prostate cancer. This effect has been associated with the degradation products of glucosinolatesâthioglycosides that accumulate within crucifers. The possible role of S-methyl cysteine sulfoxide, a metabolite that also accumulates in cruciferous vegetables, and its derivatives, in cancer prevention is relatively unexplored compared to glucosinolate derivatives. The hypothesis that consuming a broccoli soup results in the accumulation of sulfate (a SMCSO derivative) and other broccoli-derived metabolites in prostate tissue is tested. Methods and results: Eighteen men scheduled for transperineal prostate biopsy were recruited into a 4-week parallel single blinded diet supplementation study (NCT02821728). Nine men supplemented their diet with three 300 mL portions of a broccoli soup each week for four weeks prior to surgery. Analyses of prostate biopsy tissues reveal no detectable levels of glucosinolates and derivatives. In contrast, SMCSO is detected in prostate tissues of the participants, with significantly higher levels in tissue of men in the supplementation arm. SMCSO was also found in blood and urine samples from a previous intervention study with the identical broccoli soup. Conclusion: The consequences of SMCSO accumulation in prostate tissues and its potential role in prevention of prostate cancer remains to be investigated
- âŠ