8,419 research outputs found

    A most compendious and facile quantum de Finetti theorem

    Get PDF
    In its most basic form, the finite quantum de Finetti theorem states that the reduced k-partite density operator of an n-partite symmetric state can be approximated by a convex combination of k-fold product states. Variations of this result include Renner's “exponential” approximation by “almost-product” states, a theorem which deals with certain triples of representations of the unitary group, and the result of D'Cruz et al. [e-print quant-ph/0606139;Phys. Rev. Lett. 98, 160406 (2007)] for infinite-dimensional systems. We show how these theorems follow from a single, general de Finetti theorem for representations of symmetry groups, each instance corresponding to a particular choice of symmetry group and representation of that group. This gives some insight into the nature of the set of approximating states and leads to some new results, including an exponential theorem for infinite-dimensional systems

    Physical implementations of quantum absorption refrigerators

    Full text link
    Absorption refrigerators are autonomous thermal machines that harness the spontaneous flow of heat from a hot bath into the environment in order to perform cooling. Here we discuss quantum realizations of absorption refrigerators in two different settings: namely, cavity and circuit quantum electrodynamics. We first provide a unified description of these machines in terms of the concept of virtual temperature. Next, we describe the two different physical setups in detail and compare their properties and performance. We conclude with an outlook on future work and open questions in this field of research.Comment: Patrick P. Potts was formerly known as Patrick P. Hofe

    The Spectra of Density Operators and the Kronecker Coefficients of the Symmetric Group

    Full text link
    Determining the relationship between composite systems and their subsystems is a fundamental problem in quantum physics. In this paper we consider the spectra of a bipartite quantum state and its two marginal states. To each spectrum we can associate a representation of the symmetric group defined by a Young diagram whose normalised row lengths approximate the spectrum. We show that, for allowed spectra, the representation of the composite system is contained in the tensor product of the representations of the two subsystems. This gives a new physical meaning to representations of the symmetric group. It also introduces a new way of using the machinery of group theory in quantum informational problems, which we illustrate by two simple examples.Comment: 5 pages, v2 minor change

    Sparse Graph Codes for Quantum Error-Correction

    Full text link
    We present sparse graph codes appropriate for use in quantum error-correction. Quantum error-correcting codes based on sparse graphs are of interest for three reasons. First, the best codes currently known for classical channels are based on sparse graphs. Second, sparse graph codes keep the number of quantum interactions associated with the quantum error correction process small: a constant number per quantum bit, independent of the blocklength. Third, sparse graph codes often offer great flexibility with respect to blocklength and rate. We believe some of the codes we present are unsurpassed by previously published quantum error-correcting codes.Comment: Version 7.3e: 42 pages. Extended version, Feb 2004. A shortened version was resubmitted to IEEE Transactions on Information Theory Jan 20, 200

    Non-additive dissipation in open quantum networks out of equilibrium

    Full text link
    We theoretically study a simple non-equilibrium quantum network whose dynamics can be expressed and exactly solved in terms of a time-local master equation. Specifically, we consider a pair of coupled fermionic modes, each one locally exchanging energy and particles with an independent, macroscopic thermal reservoir. We show that the generator of the asymptotic master equation is not additive, i.e. it cannot be expressed as a sum of contributions describing the action of each reservoir alone. Instead, we identify an additional interference term that generates coherences in the energy eigenbasis, associated with the current of conserved particles flowing in the steady state. Notably, non-additivity arises even for wide-band reservoirs coupled arbitrarily weakly to the system. Our results shed light on the non-trivial interplay between multiple thermal noise sources in modular open quantum systems.Comment: Final author version, including new Appendix A explaining the connection between conserved currents and energy-eigenbasis coherence in open network

    Counterfactual Computation

    Full text link
    Suppose that we are given a quantum computer programmed ready to perform a computation if it is switched on. Counterfactual computation is a process by which the result of the computation may be learnt without actually running the computer. Such processes are possible within quantum physics and to achieve this effect, a computer embodying the possibility of running the computation must be available, even though the computation is, in fact, not run. We study the possibilities and limitations of general protocols for the counterfactual computation of decision problems (where the result r is either 0 or 1). If p(r) denotes the probability of learning the result r ``for free'' in a protocol then one might hope to design a protocol which simultaneously has large p(0) and p(1). However we prove that p(0)+p(1) never exceeds 1 in any protocol and we derive further constraints on p(0) and p(1) in terms of N, the number of times that the computer is not run. In particular we show that any protocol with p(0)+p(1)=1-epsilon must have N tending to infinity as epsilon tends to 0. These general results are illustrated with some explicit protocols for counterfactual computation. We show that "interaction-free" measurements can be regarded as counterfactual computations, and our results then imply that N must be large if the probability of interaction is to be close to zero. Finally, we consider some ways in which our formulation of counterfactual computation can be generalised.Comment: 19 pages. LaTex, 2 figures. Revised version has some new sections and expanded explanation
    corecore