1,457 research outputs found
It\u27s About Communities: the Commitment to Promoting a Culturally Competent Environmental Health Workforce.
Environmental health and public health are profoundly local. The Association of Environmental Health Academic Programs (AEHAP) firmly agrees and for this reason, it is important to have local environmental health experts who know the pulse of their communities. AEHAP believes in supporting the advanced scientific education of environmental health in these communities through people from these communities. Accordingly, AEHAP has sought to promote and support accredited environmental health programs among a diverse cross-section of the U.S. higher education landscape. AEHAPâs students are diverse in many ways, including socioeconomically, racially, ethnically, and culturally. The value of this approach enhances the overall education of both the students and the faculty, while better positioning students and alumni to serve their own communities where they are better equipped to aid in the development and implementation of local public health programs and responses. Summarizing the annual undergraduate and 3-year graduate program survey data provided by the National Environmental Health Science & Protection Accreditation Council (EHAC), racially and/or ethnically diverse students represent 37% and 48% of enrolled undergraduate and graduate students, respectively. For the 2017â2018 enrollment year, 39% of undergraduates were described as contributing to diversity. In addition, 56% of the student population from the undergraduate and graduate programs is female. Female students have been the majority since 2008. The demographics of EHAC-accredited program graduates are closely aligned with the current U.S. population; however, demographics will change as our nation becomes pluralistic. AEHAP and EHAC will continue to promote cultural competency of graduates and assist accredited environmental health programs in producing cohorts reflective of the needs of their local communities
Effects of Long-Term Use of Nonoxynol-9 on Vaginal Flora
OBJECTIVEâProducts containing nonoxynol-9 have been used as spermicidal contraceptives for many years, but limited data have been published describing the long-term effects of nonoxynol-9 use on the vaginal microbial ecosystem. This longitudinal study was conducted to examine the effects of nonoxynol-9 on the vaginal ecology.
METHODSâVaginal swabs were obtained from 235 women enrolled in a randomized clinical trial before initiation of use of 1 of 5 different formulations of nonoxynol-9 for contraception, and up to 3 more samples were gathered over 7 months of use. The swab samples were evaluated in a single laboratory. The prevalence of several constituents of the normal vaginal flora was evaluated. The associations between nonoxynol-9 dosage, formulation, average product use per week, and number of sex acts per week were calculated.
RESULTSâThe changes in prevalence of vaginal microbes after nonoxynol-9 use were minimal for each of the different nonoxynol-9 formulations. However, when both nonoxynol-9 concentration and number of product uses are taken into account, nonoxynol-9 did have dose-dependant effects on the increased prevalence of anaerobic gram-negative rods (odds ratio [OR] 2.4, 95% confidence interval [CI] 1.1â5.3), H2O2-negative lactobacilli (OR 2.0, 95% CI 1.0â4.1), and bacterial vaginosis (OR 2.3, 95% CI 1.1â4.7).
CONCLUSIONâThis study demonstrated that most nonoxynol-9 users experienced minimal disruptions in their vaginal ecology. There were no differences between the different formulations evaluated with respect to changes in vaginal microflora. However, independent of the nonoxynol-9 formulation, there was a dose-dependent effect with increased exposure to nonoxynol-9 on the risk of bacterial vaginosis and its associated flora
Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer
Extracellular microbe-mineral electron transfer is a major driving force for the oxidation of organic carbon in many subsurface environments. Extracellular multi-heme cytochromes of the Shewenella genus play a major role in this process but the mechanism of electron exchange at the interface between cytochrome and acceptor is widely debated. The 1.8 Ă
x-ray crystal structure of the decaheme MtrC revealed a highly conserved CX8C disulfide that, when substituted for AX8A, severely compromised the ability of S. oneidensis to grow under aerobic conditions. Reductive cleavage of the disulfide in the presence of flavin mononucleotide (FMN) resulted in the reversible formation of a stable flavocytochrome. Similar results were also observed with other decaheme cytochromes, OmcA, MtrF and UndA. The data suggest that these decaheme cytochromes can transition between highly reactive flavocytochromes or less reactive cytochromes, and that this transition is controlled by a redox active disulfide that responds to the presence of oxygen
Testing a Mahalanobis Distance Model of Black Bear Habitat Use in the Ouachita Mountains of Oklahoma
Regional wildlifeâhabitat models are commonly developed but rarely tested with truly independent data. We tested a published habitat model for black bears (Ursus americanus) with new data collected in a different site in the same ecological region (i.e., Ouachita Mountains of Arkansas and Oklahoma, USA). We used a Mahalanobis distance model developed from relocations of black bears in Arkansas to produce a map layer of Mahalanobis distances on a study area in neighboring Oklahoma. We tested this modeled map layer with relocations of black bears on the Oklahoma area. The distributions of relocations of female black bears were consistent with model predictions. We conclude that this modeling approach can be used to predict regional suitability for a species of interest
Traumatic Stress Interacts With Bipolar Disorder Genetic Risk to Increase Risk for Suicide Attempts
Objective
Bipolar disorder (BD) is one of the most heritable psychiatric conditions and is associated with high suicide risk. To explore the reasons for this link, this study examined the interaction between traumatic stress and BD polygenic risk score in relation to suicidal ideation, suicide attempt, and nonsuicidal self-injury (NSSI) in adolescent and young adult offspring and relatives of persons with BD (BD-relatives) compared with adolescent and young adult offspring of individuals without psychiatric disorders (controls).
Method
Data were collected from 4 sites in the United States and 1 site in Australia from 2006 through 2012. Generalized estimating equation models were used to compare rates of ideation, attempts, and NSSI between BD-relatives (n = 307) and controls (n = 166) and to determine the contribution of demographic factors, traumatic stress exposure, lifetime mood or substance (alcohol/drug) use disorders, and BD polygenic risk score.
Results
After adjusting for demographic characteristics and mood and substance use disorders, BD-relatives were at increased risk for suicidal ideation and attempts but not for NSSI. Independent of BD-relative versus control status, demographic factors, or mood and substance use disorders, exposure to trauma within the past year (including bullying, sexual abuse, and domestic violence) was associated with suicide attempts (p = .014), and BD polygenic risk score was marginally associated with attempts (p = .061). Importantly, the interaction between BD polygenic risk score and traumatic event exposures was significantly associated with attempts, independent of demographics, relative versus control status, and mood and substance use disorders (p = .041).
Conclusion
BD-relatives are at increased risk for suicide attempts and ideation, especially if they are exposed to trauma and have evidence of increased genetic vulnerability
Meta-analysis of genome-wide studies identifies MEF2C SNPs associated with bone mineral density at forearm
Background: Forearm fractures affect 1.7 million individuals worldwide each year and most occur earlier in life than hip fractures. While the heritability of forearm bone mineral density (BMD) and fracture is high, their genetic determinants are largely unknown. Aim: To identify genetic variants associated with forearm BMD and forearm fractures. Methods: BMD at distal radius, measured by dualenergy x-ray absorptiometry, was tested for association with common genetic variants. We conducted a metaanalysis of genome-wide association studies for BMD in 5866 subjects of European descent and then selected the variants for replication in 715 Mexican American samples. Gene-based association was carried out to supplement the single-nucleotide polymorphism (SNP) association test. We then tested the BMD-associated SNPs for association with forearm fracture in 2023 cases and 3740 controls. Results: We found that five SNPs in the introns of MEF2C were associated with forearm BMD at a genome-wide significance level (
Visualizing the Anthropocene dialectically: Jessica Woodworth and Peter Brosensâ eco-crisis trilogy
The ambition of this article is to propose a way of visualizing the Anthropocene dialectically. As suggested by the Dutch atmospheric chemist Paul Crutzen and the professor of biology Eugene F. Stoermer, the term Anthropocene refers to a historical period in which humankind has turned into a geological force that transforms the natural environment in such a way that it is hard to distinguish between the human and the natural world. Crutzen and Stoermer explain that the Anthropocene has begun after the Holocene, the geological epoch that followed the last ice age and lasted until the industrial revolution. Drawing on a number of figures such as the âtenfoldâ increase in urbanisation, the extreme transformation of land surface by human action, the use of more than 50% of all accessible fresh water by humans, and the massive increase in greenhouse emissions, Crutzen and Stoermer conclude that the term Anthropocene describes aptly mankind's influence on ecological and geological cycles (Crutzen & Stoermer, 2000, p.17). The wager of this article is that we need to identify ways to visualize the Anthropocene dialectically and I proceed to do so using as a case study Jessica Woodworth's and Peter Brosen's trilogy on the conflict between humans and nature, which consists of Khadak (2006), Altiplano (2009), and The Fifth Season (La Cinquième Saison, 2012)
Capture the fracture: a best practice framework and global campaign to break the fragility fracture cycle
Summary
The International Osteoporosis Foundation (IOF) Capture the Fracture Campaign aims to support implementation of Fracture Liaison Services (FLS) throughout the world.
Introduction
FLS have been shown to close the ubiquitous secondary fracture prevention care gap, ensuring that fragility fracture sufferers receive appropriate assessment and intervention to reduce future fracture risk.
Methods
Capture the Fracture has developed internationally endorsed standards for best practice, will facilitate change at the national level to drive adoption of FLS and increase awareness of the challenges and opportunities presented by secondary fracture prevention to key stakeholders. The Best Practice Framework (BPF) sets an international benchmark for FLS, which defines essential and aspirational elements of service delivery.
Results
The BPF has been reviewed by leading experts from many countries and subject to beta-testing to ensure that it is internationally relevant and fit-for-purpose. The BPF will also serve as a measurement tool for IOF to award âCapture the Fracture Best Practice Recognitionâ to celebrate successful FLS worldwide and drive service development in areas of unmet need. The Capture the Fracture website will provide a suite of resources related to FLS and secondary fracture prevention, which will be updated as new materials become available. A mentoring programme will enable those in the early stages of development of FLS to learn from colleagues elsewhere that have achieved Best Practice Recognition. A grant programme is in development to aid clinical systems which require financial assistance to establish FLS in their localities.
Conclusion
Nearly half a billion people will reach retirement age during the next 20Â years. IOF has developed Capture the Fracture because this is the single most important thing that can be done to directly improve patient care, of both women and men, and reduce the spiralling fracture-related care costs worldwide.</p
Establishing chromosomal design-build-test-learn through a synthetic chromosome and its combinatorial reconfiguration
Chromosome-level design-build-test-learn cycles (chrDBTLs) allow systematic combinatorial reconfiguration of chromosomes with ease. Here, we established chrDBTL with a redesigned synthetic Saccharomyces cerevisiae chromosome XV, synXV. We designed and built synXV to harbor strategically inserted features, modified elements, and synonymously recoded genes throughout the chromosome. Based on the recoded chromosome, we developed a method to enable chrDBTL: CRISPR-Cas9-mediated mitotic recombination with endoreduplication (CRIMiRE). CRIMiRE allowed the creation of customized wild-type/synthetic combinations, accelerating genotype-phenotype mapping and synthetic chromosome redesign. We also leveraged synXV as a "build-to-learn" model organism for translation studies by ribosome profiling. We conducted a locus-to-locus comparison of ribosome occupancy between synXV and the wild-type chromosome, providing insight into the effects of codon changes and redesigned features on translation dynamics in vivo. Overall, we established synXV as a versatile reconfigurable system that advances chrDBTL for understanding biological mechanisms and engineering strains. </p
SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes
Synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) generates combinatorial genomic diversity through rearrangements at designed recombinase sites. We applied SCRaMbLE to yeast synthetic chromosome arm synIXR (43 recombinase sites) and then used a computational pipeline to infer or unscramble the sequence of recombinations that created the observed genomes. Deep sequencing of 64 synIXR SCRaMbLE strains revealed 156 deletions, 89 inversions, 94 duplications, and 55 additional complex rearrangements; several duplications are consistent with a double rolling circle mechanism. Every SCRaMbLE strain was unique, validating the capability of SCRaMbLE to explore a diverse space of genomes. Rearrangements occurred exclusively at designed loxPsym sites, with no significant evidence for ectopic rearrangements or mutations involving synthetic regions, the 99% nonsynthetic nuclear genome, or the mitochondrial genome. Deletion frequencies identified genes required for viability or fast growth. Replacement of 3ⲠUTR by non-UTR sequence had surprisingly little effect on fitness. SCRaMbLE generates genome diversity in designated regions, reveals fitness constraints, and should scale to simultaneous evolution of multiple synthetic chromosomes.</jats:p
- âŚ