56 research outputs found

    Shorter constant work rate cycling tests as proxies for longer tests in highly trained cyclists

    Get PDF
    Severe-intensity constant work rate (CWR) cycling tests simulate the high-intensity competition environment and are useful for monitoring training progression and adaptation, yet impose significant physiological and psychological strain, require substantial recovery, and may disrupt athlete training or competition preparation. A brief, minimally fatiguing test providing comparable information is desirable. Purpose To determine whether physiological variables measured during, and functional decline in maximal power output immediately after, a 2-min CWR test can act as a proxy for 4-min test outcomes. Methods Physiological stress (VO _2 kinetics, heart rate, blood lactate concentrations ([La-]b)) was monitored and performance fatigability was estimated (as pre-to-post-CWR changes in 10-s sprint power) during 2- and 4-min CWR tests in 16 high-level cyclists (VO _2peak ¼ 64:4 ± 6:0 ml·kg-1·min-1). The relationship between the 2- and 4-min CWR tests and the physiological variables that best relate to the performance fatigability were investigated. Results The 2-min CWR test evoked a smaller decline in sprint mechanical power (32% vs. 47%, p \u3c 0.001). Both the physiological variables (r = 0.66–0.96) and sprint mechanical power (r = 0.67–0.92) were independently and strongly correlated between 2- and 4-min tests. Differences in VO _2peak and [La-]b in both CWR tests were strongly associated with the decline in sprint mechanical power. Conclusion Strong correlations between 2- and 4-min severe-intensity CWR test outcomes indicated that the shorter test can be used as a proxy for the longer test. A shorter test may be more practical within the elite performance environment due to lower physiological stress and performance fatigability and should have less impact on subsequent training and competition preparation

    AI solutions for human problems

    Get PDF
    Abstract Background Bronchiectasis is a chronic respiratory condition. Persistent bacterial colonisation in the stable state with increased and sometimes altered bacterial burden during exacerbations are accepted as key features in the pathophysiology. The extent to which respiratory viruses are present during stable periods and in exacerbations is less well understood. Methods This study aimed to determine the incidence of respiratory viruses within a cohort of bronchiectasis patients with acute exacerbations at a teaching hospital and, separately, in a group of patients with stable bronchiectasis. In the group of stable patients, a panel of respiratory viruses were assayed for using real time quantitative PCR in respiratory secretions and exhaled breath. The Impact of virus detection on exacerbation rates and development of symptomatic infection was evaluated. Results Routine hospital-based viral PCR testing was only requested in 28% of admissions for an exacerbation. In our cohort of stable bronchiectasis patients, viruses were detected in 92% of patients during the winter season, and 33% of patients during the summer season. In the 2-month follow up period, 2 of 27 patients presented with an exacerbation. Conclusions This pilot study demonstrated that respiratory viruses are commonly detected in patients with stable bronchiectasis. They are frequently detected during asymptomatic viral periods, and multiple viruses are often present concurrently

    Effect of Training Phase on Physical and Physiological Parameters of Male Powerlifters

    Get PDF
    Longitudinal research on training and dietary practices of natural powerlifters is limited. This study investigated the effect of phases of training on physical and physiological parameters in male natural powerlifters. Nine participants completed testing at two time points: (i) preparatory phase (~3 months prior to a major competition) and (ii) competition phase (1–2 weeks from a major competition). No significant changes between training phases were found for muscle strength and power. A trend for significance was found for decreased muscle endurance of the lower body (−24.4%, p = 0.08). A significant increase in leg lean mass was found at the competition phase (2.3%, p = 0.04), although no changes for other body composition measures were observed. No change was observed for any health marker except a trend for increased urinary creatinine clearance at the competition phase (12.5%, p = 0.08). A significant reduction in training volume for the lower body (−75.0%, p = 0.04) and a trend for a decrease in total energy intake (−17.0%, p = 0.06) was observed during the competition phase. Despite modifications in training and dietary practices, it appears that muscle performance, body composition, and health status remain relatively stable between training phases in male natural powerlifters

    Growth and mass wasting of volcanic centers in the northern South Sandwich arc, South Atlantic, revealed by new multibeam mapping

    Get PDF
    New multibeam (swath) bathymetric sonar data acquired using an EM120 system on the RRS James Clark Ross, supplemented by sub-bottom profiling, reveals the underwater morphology of a not, vert, similar 12,000 km2 area in the northern part of the mainly submarine South Sandwich volcanic arc. The new data extend between 55° 45′S and 57° 20′S and include Protector Shoal and the areas around Zavodovski, Visokoi and the Candlemas islands groups. Each of these areas is a discrete volcanic center. The entirely submarine Protector Shoal area, close to the northern limit of the arc, forms a 55 km long east–west-trending seamount chain that is at least partly of silicic composition. The seamounts are comparable to small subaerial stratovolcanoes in size, with volumes up to 83 km3, indicating that they are the product of multiple eruptions over extended periods. Zavodovski, Visokoi and the Candlemas island group are the summits of three 3–3.5 km high volcanic edifices. The bathymetric data show evidence for relationships between constructional volcanic features, including migrating volcanic centers, structurally controlled constructional ridges, satellite lava flows and domes, and mass wasting of the edifices. Mass wasting takes place mainly by strong erosion at sea level, and dispersal of this material along chutes, probably as turbidity currents and other mass flows that deposit in extensive sediment wave fields. Large scale mass wasting structures include movement of unconsolidated debris in slides, slumps and debris avalanches. Volcanism is migrating westward relative to the underlying plate and major volcanoes are asymmetrical, being steep with abundant recent volcanism on their western flanks, and gently sloping with extinct, eroded volcanic sequences to their east. This is consistent with the calculated rate of subduction erosion of the fore-arc

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Evolution of late-stage metastatic melanoma is dominated by aneuploidy and whole genome doubling

    Get PDF
    Although melanoma is initiated by acquisition of point mutations and limited focal copy number alterations in melanocytes-of-origin, the nature of genetic changes that characterise lethal metastatic disease is poorly understood. Here, we analyze the evolution of human melanoma progressing from early to late disease in 13 patients by sampling their tumours at multiple sites and times. Whole exome and genome sequencing data from 88 tumour samples reveals only limited gain of point mutations generally, with net mutational loss in some metastases. In contrast, melanoma evolution is dominated by whole genome doubling and large-scale aneuploidy, in which widespread loss of heterozygosity sculpts the burden of point mutations, neoantigens and structural variants even in treatment-naïve and primary cutaneous melanomas in some patients. These results imply that dysregulation of genomic integrity is a key driver of selective clonal advantage during melanoma progression

    The Iceland Greenland Seas Project

    Get PDF
    A coordinated atmosphere-ocean research project, centered on a rare wintertime field campaign to the Iceland and Greenland Seas, seeks to determine the location and causes of dense water formation by cold-air outbreaks. The Iceland Greenland Seas Project (IGP) is a coordinated atmosphere-ocean research program investigating climate processes in the source region of the densest waters of the Atlantic Meridional Overturning Circulation. During February and March 2018, a field campaign was executed over the Iceland and southern Greenland Seas that utilized a range of observing platforms to investigate critical processes in the region – including a research vessel, a research aircraft, moorings, sea gliders, floats and a meteorological buoy. A remarkable feature of the field campaign was the highly-coordinated deployment of the observing platforms, whereby the research vessel and aircraft tracks were planned in concert to allow simultaneous sampling of the atmosphere, the ocean and their interactions. This joint planning was supported by tailor-made convection-permitting weather forecasts and novel diagnostics from an ensemble prediction system. The scientific aims of the IGP are to characterize the atmospheric forcing and the ocean response of coupled processes; in particular, cold-air outbreaks in the vicinity of the marginal-ice zone and their triggering of oceanic heat loss, and the role of freshwater in the generation of dense water masses. The campaign observed the lifecycle of a long-lasting cold-air outbreak over the Iceland Sea and the development of a cold-air outbreak over the Greenland Sea. Repeated profiling revealed the immediate impact on the ocean, while a comprehensive hydrographic survey provided a rare picture of these subpolar seas in winter. A joint atmosphere-ocean approach is also being used in the analysis phase, with coupled observational analysis and coordinated numerical modelling activities underway

    Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex

    Get PDF
    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders
    corecore