4,526 research outputs found

    Total syntheses of conformationally-locked difluorinated pentopyranose analogues and a pentopyranosyl phosphate mimetic

    Get PDF
    Trifluoroethanol has been elaborated, via a telescoped sequence involving a metalated difluoroenol, a difluoroallylic alcohol, [2,3]-Wittig rearrangement, and ultimately an RCM reaction and requiring minimal intermediate purification, to a number of cyclooctenone intermediates. Epoxidation of these intermediates followed by transannular ring opening or dihydroxylation, then transannular hemiacetalization delivers novel bicyclic analogues of pentopyranoses, which were elaborated (in one case) to an analogue of a glycosyl phosphate

    Hypothesis testing near singularities and boundaries

    Full text link
    The likelihood ratio statistic, with its asymptotic χ2\chi^2 distribution at regular model points, is often used for hypothesis testing. At model singularities and boundaries, however, the asymptotic distribution may not be χ2\chi^2, as highlighted by recent work of Drton. Indeed, poor behavior of a χ2\chi^2 for testing near singularities and boundaries is apparent in simulations, and can lead to conservative or anti-conservative tests. Here we develop a new distribution designed for use in hypothesis testing near singularities and boundaries, which asymptotically agrees with that of the likelihood ratio statistic. For two example trinomial models, arising in the context of inference of evolutionary trees, we show the new distributions outperform a χ2\chi^2.Comment: 32 pages, 12 figure

    Axisymmetric Hadley Cell Theory with a Fixed Tropopause Temperature Rather than Height

    Get PDF
    Axisymmetric Hadley cell theory has traditionally assumed that the tropopause height (H_t) is uniform and unchanged from its radiative–convective equilibrium (RCE) value by the cells’ emergence. Recent studies suggest that the tropopause temperature (T_t), not height, is nearly invariant in RCE, which would require appreciable meridional variations in H_t. Here, we derive modified expressions of axisymmetric theory by assuming a fixed T_t and compare the results to their fixed-H_t counterparts. If T_t and the depth-averaged lapse rate are meridionally uniform, then at each latitude H_t varies linearly with the local surface temperature, altering the diagnosed gradient-balanced zonal wind at the tropopause appreciably (up to tens of meters per second) but the minimal Hadley cell extent predicted by Hide’s theorem only weakly (≲1°) under standard annual-mean and solsticial forcings. A uniform T_t alters the thermal field required to generate an angular-momentum-conserving Hadley circulation, but these changes and the resulting changes to the equal-area model solutions for the cell edges again are modest (<10%). In numerical simulations of latitude-by-latitude RCE under annual-mean forcing using a single-column model, assuming a uniform T_t is reasonably accurate up to the midlatitudes, and the Hide’s theorem metrics are again qualitatively insensitive to the tropopause definition. However imperfectly axisymmetric theory portrays the Hadley cells in Earth’s macroturbulent atmosphere, evidently its treatment of the tropopause is not an important error source

    A generalized AIC for models with singularities and boundaries

    Full text link
    The Akaike information criterion (AIC) is a common tool for model selection. It is frequently used in violation of regularity conditions at parameter space singularities and boundaries. The expected AIC is generally not asymptotically equivalent to its target at singularities and boundaries, and convergence to the target at nearby parameter points may be slow. We develop a generalized AIC for candidate models with or without singularities and boundaries. We show that the expectation of this generalized form converges everywhere in the parameter space, and its convergence can be faster than that of the AIC. We illustrate the generalized AIC on example models from phylogenomics, showing that it can outperform the AIC and gives rise to an interpolated effective number of model parameters, which can differ substantially from the number of parameters near singularities and boundaries. We outline methods for estimating the often unknown generating parameter and bias correction term of the generalized AIC.Comment: 21 pages, 5 figure

    The Use of Structured Imagery and Dispositional Measurement to Assess Situational Use of Mindfulness Skills

    Get PDF
    The recent proliferation of studies on mindfulness produced varying theoretical models, each based in part on how mindfulness is assessed. These models agree, however, that mindfulness encompasses moment-to-moment or situational experiences. Incongruence between dispositional and situational assessment would be problematic for theory and empirical research. In particular, it remains to be established whether situational measurement is an accurate method for mindfulness assessment and whether dispositional measures are able to accurately detect mindfulness skills in various situations. The association between dispositional and situational mindfulness processes (i.e., situational attention awareness and emotion acceptance) was examined in two studies. In Study 1 (N = 148), independent groups who reported high and low levels of dispositional mindfulness skills were compared on a continuous measure of situational mindfulness skills. In Study 2 (N = 317), dispositional mindfulness questionnaires were used to predict situational use of mindfulness skills. Results suggest not only that situational measures accurately detect use of mindfulness skills, but also that dispositional measures can predict one\u27s use of situational mindfulness skills. Findings from both studies were consistent across both positive and negative situations. Moreover, neither neuroticism nor extraversion was shown to have a moderating effect on the relationship between dispositional and situational use of mindfulness skills. The implications of these findings for clinical practice and future investigations pertaining to measurement validity in this area are discussed

    Factors Affecting Shark Detection from Drone Patrols in Southeast Queensland, Eastern Australia

    Get PDF
    Drones enable the monitoring for sharks in real-time, enhancing the safety of ocean users with minimal impact on marine life. Yet, the effectiveness of drones for detecting sharks (especially potentially dangerous sharks; i.e., white shark, tiger shark, bull shark) has not yet been tested at Queensland beaches. To determine effectiveness, it is necessary to understand how environmental and operational factors affect the ability of drones to detect sharks. To assess this, we utilised data from the Queensland SharkSmart drone trial, which operated at five southeast Queensland beaches for 12 months in 2020–2021. The trial conducted 3369 flights, covering 1348 km and sighting 174 sharks (48 of which were >2 m in length). Of these, eight bull sharks and one white shark were detected, leading to four beach evacuations. The shark sighting rate was 3% when averaged across all beaches, with North Stradbroke Island (NSI) having the highest sighting rate (17.9%) and Coolum North the lowest (0%). Drone pilots were able to differentiate between key shark species, including white, bull and whaler sharks, and estimate total length of the sharks. Statistical analysis indicated that location, the sighting of other fauna, season and flight number (proxy for time of day) influenced the probability of sighting shark

    Subject-specific computer simulation model for determining elbow loading in one-handed tennis backhand groundstrokes.

    Get PDF
    A subject-specific angle-driven computer model of a tennis player, combined with a forward dynamics, equipment-specific computer model of tennis ball–racket impacts, was developed to determine the effect of ball–racket impacts on loading at the elbow for one-handed backhand groundstrokes. Matching subject-specific computer simulations of a typical topspin/slice one-handed backhand groundstroke performed by an elite tennis player were done with root mean square differences between performance and matching simulations of < 0.5°over a 50 ms period starting from ball impact. Simulation results suggest that for similar ball–racket impact conditions, the difference in elbow loading for a topspin and slice one-handed backhand groundstroke is relatively small. In this study, the relatively small differences in elbow loading may be due to comparable angle–time histories at the wrist and elbow joints with the major kinematic differences occurring at the shoulder. Using a subject-specific angle-driven computer model combined with a forward dynamics, equipment-specific computer model of tennis ball–racket impacts allows peak internal loading, net impulse, and shock due to ball–racket impact to be calculated which would not otherwise be possible without impractical invasive techniques. This study provides a basis for further investigation of the factors that may increase elbow loading during tennis strokes
    • …
    corecore