794 research outputs found
Coordinated Ionospheric Reconstruction CubeSat Experiment (CIRCE) mission overview
The Coordinated Ionospheric Reconstruction Cubesat Experiment (CIRCE) is a joint US/UK mission consisting of two 6U CubeSats actively maintaining a lead-follow configuration in the same low Earth orbit with a launch planned for the 2020 timeframe. These nanosatellites will each feature multiple space weather payloads. From the US, the Naval Research Laboratory will provide two 1U Triple Tiny Ionospheric Photometers (Tri-TIPs) on each satellite, observing the ultraviolet 135.6 nm emission of atomic oxygen at nighttime. The primary objective is to characterize the twodimensional distribution of electrons in the Equatorial Ionization Anomaly (EIA). The methodology used to reconstruct the nighttime ionosphere employs continuous UV photometry from four distinct viewing angles in combination with an additional data source, such as in situ plasma density measurements, with advanced image space reconstruction algorithm tomography techniques. From the UK, the Defence Science and Technology Laboratory (Dstl) is providing the In-situ and Remote Ionospheric Sensing suite consisting of an Ion/Neutral Mass Spectrometer, a triple-frequency GPS receiver for ionospheric sensing, and a radiation environment monitor. We present our mission concept, simulations illustrating the imaging capability of the Tri-TIP sensor suite, and a range of science questions addressable via these measurements
Saving for your future self: The role of imaginary experiences
Despite increased longevity, many people fail to save the funds necessary to support their retirement. In an attempt both to elucidate and remedy this failing, research exploring the “future-self continuity” hypothesis has revealed that temporal discounting is decreased and saving increased when connections between one’s current and future self are strengthened. Here, we explored the possibility that a basic component of mental imagery–spatial visual perspective–may be an important determinant of people’s decisions to spend now or save for the future. The results of two experiments supported this prediction. Rates of saving were enhanced when a distant-future event was generated from a third-person vs. first-person vantage point, an effect that was mediated by visual bodily awareness during mental imagery
ARPES: A probe of electronic correlations
Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct
methods of studying the electronic structure of solids. By measuring the
kinetic energy and angular distribution of the electrons photoemitted from a
sample illuminated with sufficiently high-energy radiation, one can gain
information on both the energy and momentum of the electrons propagating inside
a material. This is of vital importance in elucidating the connection between
electronic, magnetic, and chemical structure of solids, in particular for those
complex systems which cannot be appropriately described within the
independent-particle picture. Among the various classes of complex systems, of
great interest are the transition metal oxides, which have been at the center
stage in condensed matter physics for the last four decades. Following a
general introduction to the topic, we will lay the theoretical basis needed to
understand the pivotal role of ARPES in the study of such systems. After a
brief overview on the state-of-the-art capabilities of the technique, we will
review some of the most interesting and relevant case studies of the novel
physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental
Techniques", edited by A. Avella and F. Mancini, Springer Series in
Solid-State Sciences (2013). A high-resolution version can be found at:
http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf.
arXiv admin note: text overlap with arXiv:cond-mat/0307085,
arXiv:cond-mat/020850
Coordinated optimization of visual cortical maps (II) Numerical studies
It is an attractive hypothesis that the spatial structure of visual cortical
architecture can be explained by the coordinated optimization of multiple
visual cortical maps representing orientation preference (OP), ocular dominance
(OD), spatial frequency, or direction preference. In part (I) of this study we
defined a class of analytically tractable coordinated optimization models and
solved representative examples in which a spatially complex organization of the
orientation preference map is induced by inter-map interactions. We found that
attractor solutions near symmetry breaking threshold predict a highly ordered
map layout and require a substantial OD bias for OP pinwheel stabilization.
Here we examine in numerical simulations whether such models exhibit
biologically more realistic spatially irregular solutions at a finite distance
from threshold and when transients towards attractor states are considered. We
also examine whether model behavior qualitatively changes when the spatial
periodicities of the two maps are detuned and when considering more than 2
feature dimensions. Our numerical results support the view that neither minimal
energy states nor intermediate transient states of our coordinated optimization
models successfully explain the spatially irregular architecture of the visual
cortex. We discuss several alternative scenarios and additional factors that
may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with
arXiv:1102.335
Is there scope for community health nurses to address lifestyle risk factors? : the community nursing SNAP trial
Background: This paper examines the opportunity and need for lifestyle interventions for patients attending generalist community nursing services in Australia. This will help determine the scope for risk factor management within community health care by generalist community nurses (GCNs).Methods: This was a quasi-experimental study conducted in four generalist community nursing services in NSW, Australia. Prior to service contacts, clients were offered a computer-assisted telephone interview to collect baseline data on socio-demographics, health conditions, smoking status, physical activity levels, alcohol consumption, height and weight, fruit and vegetable intake and 'readiness-to-change' for lifestyle risk factors.Results: 804 clients participated (a response rate of 34.1%). Participants had higher rates of obesity (40.5% vs 32.1%) and higher prevalence of multiple risk factors (40.4% vs 29.5%) than in the general population. Few with a SNAPW (Smoking-Nutrition-Alcohol-Physical-Activity-Weight) risk factor had received advice or referral in the previous 3 months. The proportion of clients identified as at risk and who were open to change (i.e. contemplative, in preparation or in action phase) were 65.0% for obese/overweight; 73.8% for smokers; 48.2% for individuals with high alcohol intake; 83.5% for the physically inactive and 59.0% for those with poor nutrition.Conclusions: There was high prevalence of lifestyle risk factors. Although most were ready to change, few clients recalled having received any recent lifestyle advice. This suggests that there is considerable scope for intervention by GCNs. The results of this trial will shed light on how best to implement the lifestyle risk factor management in routine practice
Effectiveness of national cervical cancer screening programme in Taiwan: 12-year experiences
BACKGROUND: We examined cervical cancer incidence before and after nationwide cervical cancer screening was initiated in Taiwan in mid-1995. RESULTS: The invasive cancer incidence decreased by 47.8% during 1995-2006 . The carcinoma in situ incidence increased 1.7-fold during 1995-2000, and decreased by 19.6% during 2000-2006. CONCLUSION: The Taiwan national programme has significantly decreased invasive cervical cancer
Coordinated Ionospheric Reconstruction CubeSat Experiment (CIRCE), In situ and Remote Ionospheric Sensing (IRIS) suite
The UK’s Defence Science and Technology Laboratory (Dstl) is partnering with the US Naval Research Laboratory (NRL) on a joint mission to launch miniature sensors that will advance space weather measurement and modelling capabilities. The Coordinated Ionospheric Reconstruction Cubesat Experiment (CIRCE) comprises two 6U cube-satellites that will be launched into a near-polar low earth orbit (LEO), targeting 500 km altitude, in 2021. The UK contribution to CIRCE is the In situ and Remote Ionospheric Sensing (IRIS) suite, complementary to NRL sensors, and comprising three highly miniaturised payloads provided to Dstl by University College London (UCL), University of Bath, and University of Surrey/Surrey Satellite Technology Ltd (SSTL). One IRIS suite will be flown on each satellite, and incorporates an ion/neutral mass spectrometer, a tri-band global positioning system (GPS) receiver for ionospheric remote sensing, and a radiation environment monitor. From the US, NRL have provided two 1U Triple Tiny Ionospheric Photometers (Tri-TIPs) on each satellite (Nicholas et al., 2019), observing the ultraviolet 135.6 nm emission of atomic oxygen at night-time to characterize the two-dimensional distribution of electrons
A study of association between common variation in the growth hormone-chorionic somatomammotropin hormone gene cluster and adult fasting insulin in a UK Caucasian population
BACKGROUND: Reduced growth during infancy is associated with adult insulin resistance. In a UK Caucasian cohort, the CSH1.01 microsatellite polymorphism in the growth hormone-chorionic somatomammotropin hormone gene cluster was recently associated with increases in adult fasting insulin of approximately 23 pmol/l for TT homozygote males compared to D1D1 or D2D2 homozygotes (P = 0.001 and 0.009; n = 206 and 92, respectively), but not for females. TT males additionally had a 547-g lower weight at 1 year (n = 270; P = 0.008) than D2D2 males. We sought to replicate these data in healthy UK Caucasian subjects. We genotyped 1396 subjects (fathers, mothers and children) from a consecutive birth study for the CSH1.01 marker and analysed genotypes for association with 1-year weight in boys and fasting insulin in fathers. RESULTS: We found no evidence for association of CSH1.01 genotype with adult male fasting insulin concentrations (TT/D1D1 P = 0.38; TT/D2D2 P = 0.18) or weight at 1 year in boys (TT/D1D1 P = 0.76; TT/D2D2 P = 0.85). For fasting insulin, our data can exclude the previously observed effect sizes as the 95 % confidence intervals for the differences observed in our study exclude increases in fasting insulin of 9.0 and 12.6 pmol/l for TT relative to D1D1 and D2D2 homozygotes, respectively. Whilst we have fewer data on boys' 1-year weight than the original study, our data can exclude a reduction in 1-year weight greater than 557 g for TT relative to D2D2 homozygotes. CONCLUSION: We have not found association of the CSH1.01 genotype with fasting insulin or weight at 1 year. We conclude that the original study is likely to have over-estimated the effect size for fasting insulin, or that the difference in results reflects the younger age of subjects in this study relative to those in the previous study
Nicotinic acetylcholine receptor subunit variants are associated with blood pressure; findings in the Old Order Amish and replication in the Framingham Heart Study
<p>Abstract</p> <p>Background</p> <p>Systemic blood pressure, influenced by both genetic and environmental factors, is regulated via sympathetic nerve activity. We assessed the role of genetic variation in three subunits of the neuromuscular nicotinic acetylcholine receptor positioned on chromosome 2q, a region showing replicated evidence of linkage to blood pressure.</p> <p>Methods</p> <p>We sequenced <it>CHRNA1</it>, <it>CHRND </it>and <it>CHRNG </it>in 24 Amish subjects from the Amish Family Diabetes Study (AFDS) and identified 20 variants. We then performed association analysis of non-redundant variants (n = 12) in the complete AFDS cohort of 1,189 individuals, and followed by genotyping blood pressure-associated variants (n = 5) in a replication sample of 1,759 individuals from the Framingham Heart Study (FHS).</p> <p>Results</p> <p>The minor allele of a synonymous coding SNP, rs2099489 in <it>CHRNG</it>, was associated with higher systolic blood pressure in both the Amish (p = 0.0009) and FHS populations (p = 0.009) (minor allele frequency = 0.20 in both populations).</p> <p>Conclusion</p> <p><it>CHRNG </it>is currently thought to be expressed only during fetal development. These findings support the Barker hypothesis, that fetal genotype and intra-uterine environment influence susceptibility to chronic diseases later in life. Additional studies of this variant in other populations, as well as the effect of this variant on acetylcholine receptor expression and function, are needed to further elucidate its potential role in the regulation of blood pressure. This study suggests for the first time in humans, a possible role for genetic variation in the neuromuscular nicotinic acetylcholine receptor, particularly the gamma subunit, in systolic blood pressure regulation.</p
Wnt antagonist secreted frizzled-related protein 4 upregulates adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells
With more than 1.4 billion overweight or obese adults worldwide, obesity and progression of the metabolic syndrome are major health and economic challenges. To address mechanisms of obesity, adipose tissue-derived mesenchymal stem cells (ADSCs) are being studied to detail the molecular mechanisms involved in adipogenic differentiation. Activation of the Wnt signalling pathway has inhibited adipogenesis from precursor cells. In our study, we examined this anti-adipogenic effect in further detail stimulating Wnt with lithium chloride (LiCl) and 6-bromo indirubin 3'oxime (BIO). We also examined the effect of Wnt inhibition using secreted frizzled-related protein 4 (sFRP4), which we have previously shown to be pro-apoptotic, anti-angiogenic, and anti-tumorigenic. Wnt stimulation in LiCl and BIOtreated ADSCs resulted in a significant reduction (2.7-fold and 12-fold respectively) in lipid accumulation as measured by Oil red O staining while Wnt inhibition with sFRP4 induced a 1.5-fold increase in lipid accumulation. Furthermore, there was significant 1.2-fold increase in peroxisome proliferator-activated receptor gamma (PPAR ?) and CCAAT/enhancer binding protein alpha (C/EBPa), and 1.3-fold increase in acetyl CoA carboxylase protein levels. In contrast, the expression of adipogenic proteins (PPAR?, C/EBPa, and acetyl CoA carboxylase) were decreased significantly with LiCl (by 1.6, 2.6, and 1.9-fold respectively) and BIO (by 7, 17, and 5.6-fold respectively) treatments. These investigations demonstrate interplay between Wnt antagonism and Wnt activation during adipogenesis and indicate pathways for therapeutic intervention to control this process
- …