6 research outputs found

    Accuracy of malaria rapid diagnosis test Optimal-IT® in Kinshasa, the Democratic Republic of Congo

    No full text
    Abstract Background Despite some problems related to accuracy and applicability, malaria rapid diagnostic tests (RDTs), are currently considered the best option in areas with limited laboratory services for improving case management and reducing over-treatment. However, their performance must be established taking into the account the particularities of each endemic area. In the Democratic Republic of Congo, the validity of Optimal-IT® and Paracheck-Pf®, respectively based on the detection of lactate dehydrogenase and histidine-rich protein-2, was assessed at primary health care level (PHC). Methods This was a two-stage cluster randomized survey, conducted in one health centre in 12 health zones in Kinshasa city. All patients with malaria presumptive diagnosis were eligible. Gold standard was microscopy performed by experts from the parasitology unit, Kinshasa University. Results 624 patients were enrolled. 53.4% (95% CI: 49.4-57.3) owed a bed net, obtained in 74.5% of cases (95% CI: 69.4-79.1) through community-based distribution by the National Malaria Control Programme. Microscopy expert reading confirmed 123 malaria cases (19.7%; 95% CI: 16.7-23.1). Overall sensitivity were 79.7% (95% CI: 72.4-86.8), 87.8% (95% CI: 81.9-93.6) and 86.2% (95% CI: 79.9-92.3), respectively, for Optimal-IT®, Paracheck-Pf® and microscopy performed at PHC. Specificity was 97.0% (95% CI: 95.5-98.5), 91.6% (95% CI: 89.1-94.0) and 49.1% (95% CI: 44.7-53.4). The proportion of confirmed cases seemed similar in under-fives compared to others. Any treatment prior to the current visit was a predictor for malaria (AOR: 2.3; 95% CI: 1.5-3.5), but not malaria treatment (AOR: 0.87; 95% CI: 0.4-1.8). Bed net ownership tended to protect against malaria (AOR: 0.67; 95% CI: 0.45-0.99). Conclusion Although microscopy is considered as the "gold standard" for malaria diagnosis at point of care level, this study showed that its accuracy may not always be satisfactory when performed in health centres.</p

    Therapeutic Efficacy of Artemisinin-Based Combination Therapies in Democratic Republic of the Congo and Investigation of Molecular Markers of Antimalarial Resistance

    No full text
    Routine assessment of the efficacy of artemisinin-based combination therapies (ACTs) is critical for the early detection of antimalarial resistance. We evaluated the efficacy of ACTs recommended for treatment of uncomplicated malaria in five sites in Democratic Republic of the Congo (DRC): artemether-lumefantrine (AL), artesunate-amodiaquine (ASAQ), and dihydroartemisinin-piperaquine (DP). Children aged 6–59 months with confirmed Plasmodium falciparum malaria were treated with one of the three ACTs and monitored. The primary endpoints were uncorrected and polymerase chain reaction (PCR)-corrected 28-day (AL and ASAQ) or 42-day (DP) cumulative efficacy. Molecular markers of resistance were investigated. Across the sites, uncorrected efficacy estimates ranged from 63% to 88% for AL, 73% to 100% for ASAQ, and 56% to 91% for DP. PCR-corrected efficacy estimates ranged from 86% to 98% for AL, 91% to 100% for ASAQ, and 84% to 100% for DP. No pfk13 mutations previously found to be associated with ACT resistance were observed. Statistically significant associations were found between certain pfmdr1 and pfcrt genotypes and treatment outcome. There is evidence of efficacy below the 90% cutoff recommended by WHO to consider a change in first-line treatment recommendations of two ACTs in one site not far from a monitoring site in Angola that has shown similar reduced efficacy for AL. Confirmation of these findings in future therapeutic efficacy monitoring in DRC is warranted
    corecore