120 research outputs found
Left ventricular assist device implantation augments nitric oxide dependent control of mitochondrial respiration in failing human hearts
AbstractOBJECTIVESThe objective of the study was to evaluate nitric oxide (NO) mediated regulation of mitochondrial respiration after implantation of a mechanical assist device in end-stage heart failure.BACKGROUNDVentricular unloading using a left ventricular assist device (LVAD) can improve mitochondrial function in end-stage heart failure. Nitric oxide modulates the activity of the mitochondrial electron transport chain to regulate myocardial oxygen consumption (MVO2).METHODSMyocardial oxygen consumption was measured polarographically using a Clark-type oxygen electrode in isolated left ventricular myocardium from 26 explanted failing human hearts obtained at the time of heart transplantation.RESULTSThe rate of decrease in oxygen concentration was expressed as a percentage of baseline. Results of the highest dose of drug are shown. Decrease in MVO2 was greater in LVAD hearts (n = 8) compared with heart failure controls (n = 18) in response to the following drugs: bradykinin (−34 ± 3% vs. −24 ± 5%), enalaprilat (−37 ± 5% vs. −23 ± 5%) and amlodipine (−43 ± 13% vs. −16 ± 5%; p < 0.05 from controls). The decrease in MVO2 in LVAD hearts was not significantly different from controls in response to diltiazem (−22 ± 5% in both groups) and exogenous NO donor, nitroglycerin (−33 ± 7% vs. −30 ± 3%). Nw-nitro-L-arginine methyl ester, inhibitor of NO synthase, attenuated the response to bradykinin, enalaprilat and amlodipine. Reductions in MVO2 in response to diltiazem and nitroglycerin were not altered by inhibiting NO.CONCLUSIONSChronic LVAD support potentiates endogenous NO-mediated regulation of mitochondrial respiration. Use of medical or surgical interventions that augment NO bioavailability may promote myocardial recovery in end-stage heart failure
Predictors of Bicuspid Aortic Valve-Associated Aortopathy in Childhood: A Report From the MIBAVA Consortium
BACKGROUND: Bicuspid aortic valve (BAV) is the most prevalent congenital heart defect affecting 1% to 2% of the population. It is associated with ascending aorta dilatation. Valve morphology, aortic stenosis (AS), and aortic insufficiency (AI) have been proposed as potential risk factors; however, evaluating their role is difficult, as these factors are inherently related. The aim of this study was to determine whether BAV morphology and dysfunction are independent determinants for ascending aorta dilatation in pediatric patients.
METHODS: A multicenter, retrospective, cross-sectional study of pediatric BAV patients followed since 2004 was performed. Imaging data were assessed for BAV morphology, severity of AS and AI, history of coarctation, and aortic dimensions. Associations were determined using multivariable regression analysis. A subset of patients undergoing aortic interventions (balloon dilation or Ross) were assessed longitudinally.
RESULTS: Data were obtained from 2122 patients (68% male; median age 10.2 years). Fifty percent of patients had ascending aorta dilatation. Right and noncoronary cusp fusion, increasing AS and AI, and older age were independently associated with ascending aorta dilatation. A history of coarctation was associated with less ascending aorta dilatation. In patients with neither AS nor AI, 37% had ascending aorta dilatation (4% severe). No complications related to aortic dilatation occurred in this cohort. Aortic
CONCLUSIONS: In this large pediatric cohort of patients with BAV, valve morphology, AS, and AI are independently associated with ascending aorta dilatation, suggesting that hemodynamic factors influence aortopathy. However, even in BAVs with no AS or AI, there is significant ascending aorta dilatation independent of valve morphology. Interventions that led to changes in degree of AI and AS did not seem to influence change in aortic dimensions. The current BAV cohort can be used as a reference group for expected changes in aortic dimensions during childhood
Results of a phase I/II multi-center investigation of udenafil in adolescents after fontan palliation
BACKGROUND:
The Fontan operation results in a circulation that is dependent on low pulmonary vascular resistance to maintain an adequate cardiac output. Medical therapies that lower pulmonary vascular resistance may augment cardiac output and improve long-term outcomes.
OBJECTIVES:
This phase I/II clinical trial conducted by the Pediatric Heart Network was designed to evaluate short-term safety, pharmacokinetics (PK), and preliminary efficacy of udenafil in adolescents following Fontan.
METHODS:
A 5-day dose-escalation trial was conducted in five study cohorts of six subjects each (37.5, 87.5, and 125 mg daily, 37.5 and 87.5 mg by mouth twice daily). A control cohort with 6 subjects underwent exercise testing only. Adverse events (AEs) were recorded, PK samples were collected on study days six through eight, and clinical testing was performed at baseline and day five.
RESULTS:
The trial enrolled 36 subjects; mean age 15.8 years (58% male). There were no significant differences in subject characteristics between cohorts. No drug-related serious AEs were reported during the study period; 24 subjects had AEs possibly or probably related to study drug. Headache was the most common AE, occurring in 20 of 30 subjects. The 87.5 mg bid cohort was well tolerated, achieved the highest maximal concentration (506 ng/mL) and the highest average concentration over the dosing interval (279 ng/mL), and was associated with a suggestion of improvement in myocardial performance. Exercise performance did not improve in any of the dosing cohorts.
CONCLUSIONS:
Udenafil was well-tolerated at all dosing levels. The 87.5 mg bid cohort achieved the highest plasma drug level and was associated with a suggestion of improvement in myocardial performance. These data suggest that the 87.5 mg bid regimen may be the most appropriate for a Phase III clinical trial
Machine Learning Identifies Clinical and Genetic Factors Associated With Anthracycline Cardiotoxicity in Pediatric Cancer Survivors
BACKGROUND Despite known clinical risk factors, predicting anthracycline cardiotoxicity remains challenging. OBJECTIVES This study sought to develop a clinical and genetic risk prediction model for anthracycline cardiotoxicity in childhood cancer survivors. METHODS We performed exome sequencing in 289 childhood cancer survivors at least 3 years from anthracycline exposure. In a nested case-control design, 183 case patients with reduced left ventricular ejection fraction despite low-dose doxorubicin (\u3c= 250 mg/m(2)), and 106 control patients with preserved left ventricular ejection fraction despite doxorubicin \u3e250 mg/m(2) were selected as extreme phenotypes. Rare/low-frequency variants were collapsed to identify genes differentially enriched for variants between case patients and control patients. The expression levels of 5 top-ranked genes were evaluated in human induced pluripotent stem cell-derived cardiomyocytes, and variant enrichment was confirmed in a replication cohort. Using random forest, a risk prediction model that included genetic and clinical predictors was developed. RESULTS Thirty-one genes were differentially enriched for variants between case patients and control patients (p \u3c 0.001). Only 42.6% case patients harbored a variant in these genes compared to 89.6% control patients (odds ratio: 0.09; 95% confidence interval: 0.04 to 0.17; p = 3.98 x 10(-15)). A risk prediction model for cardiotoxicity that included clinical and genetic factors had a higher prediction accuracy and lower misclassification rate compared to the clinical-only model. In vitro inhibition of gene-associated pathways (PI3KR2, ZNF827) provided protection from cardiotoxicity in cardiomyocytes. CONCLUSIONS Our study identified variants in cardiac injury pathway genes that protect against cardiotoxicity and informed the development of a prediction model for delayed anthracycline cardiotoxicity, and it also provided new targets in autophagy genes for the development of cardio-protective drugs
Recommended from our members
<i>De Novo</i> and Rare Variants at Multiple Loci Support the Oligogenic Origins of Atrioventricular Septal Heart Defects
Congenital heart disease (CHD) has a complex genetic etiology, and recent studies suggest that high penetrance de novo mutations may account for only a small fraction of disease. In a multi-institutional cohort surveyed by exome sequencing, combining analysis of 987 individuals (discovery cohort of 59 affected trios and 59 control trios, and a replication cohort of 100 affected singletons and 533 unaffected singletons) we observe variation at novel and known loci related to a specific cardiac malformation the atrioventricular septal defect (AVSD). In a primary analysis, by combining developmental coexpression networks with inheritance modeling, we identify a de novo mutation in the DNA binding domain of NR1D2 (p.R175W). We show that p.R175W changes the transcriptional activity of Nr1d2 using an in vitro transactivation model in HUVEC cells. Finally, we demonstrate previously unrecognized cardiovascular malformations in the Nr1d2tm1-Dgen knockout mouse. In secondary analyses we map genetic variation to protein-interaction networks suggesting a role for two collagen genes in AVSD, which we corroborate by burden testing in a second replication cohort of 100 AVSDs and 533 controls (p = 8.37e-08). Finally, we apply a rare-disease inheritance model to identify variation in genes previously associated with CHD (ZFPM2, NSD1, NOTCH1, VCAN, and MYH6), cardiac malformations in mouse models (ADAM17, CHRD, IFT140, PTPRJ, RYR1 and ATE1), and hypomorphic alleles of genes causing syndromic CHD (EHMT1, SRCAP, BBS2, NOTCH2, and KMT2D) in 14 of 59 trios, greatly exceeding variation in control trios without CHD (p = 9.60e-06). In total, 32% of trios carried at least one putatively disease-associated variant across 19 loci,suggesting that inherited and de novo variation across a heterogeneous group of loci may contribute to disease risk
Common Variation in ISL1 Confers Genetic Susceptibility for Human Congenital Heart Disease
Congenital heart disease (CHD) is the most common birth abnormality and the etiology is unknown in the overwhelming majority of cases. ISLET1 (ISL1) is a transcription factor that marks cardiac progenitor cells and generates diverse multipotent cardiovascular cell lineages. The fundamental role of ISL1 in cardiac morphogenesis makes this an exceptional candidate gene to consider as a cause of complex congenital heart disease. We evaluated whether genetic variation in ISL1 fits the common variant–common disease hypothesis. A 2-stage case-control study examined 27 polymorphisms mapping to the ISL1 locus in 300 patients with complex congenital heart disease and 2,201 healthy pediatric controls. Eight genic and flanking ISL1 SNPs were significantly associated with complex congenital heart disease. A replication study analyzed these candidate SNPs in 1,044 new cases and 3,934 independent controls and confirmed that genetic variation in ISL1 is associated with risk of non-syndromic congenital heart disease. Our results demonstrate that two different ISL1 haplotypes contribute to risk of CHD in white and black/African American populations
Recommended from our members
Exome Sequencing Identifies Rare Variants in Multiple Genes in Atrioventricular Septal Defect
Purpose The genetic etiology of atrioventricular septal defect (AVSD) is unknown in 40% cases. Conventional sequencing and arrays have identified the etiology in only a minority of non-syndromic individuals with AVSD. Methods: Whole exome sequencing was performed in 81 unrelated probands with AVSD to identify potentially causal variants in a comprehensive set of 112 genes with strong biological relevance to AVSD. Results: A significant enrichment of rare and rare/damaging variants was identified in the gene set, compared with controls (odds ratio 1.52, 95% confidence interval 1.35–1.71, p = 4.8 x 10-11). The enrichment was specific to AVSD probands compared with a non-AVSD cohort with tetralogy of Fallot (odds ratio 2.25, 95% confidence interval 1.84-2.76, p = 2.2 x 10-16). Six genes (NIPBL, CHD7, CEP152, BMPR1a, ZFPM2 and MDM4) were enriched for rare variants in AVSD compared to controls, including three syndrome-associated genes (NIPBL, CHD7, CEP152). The findings were confirmed in a replication cohort of 81 AVSD probands. Conclusion: Mutations in genes with strong biological relevance to AVSD, including syndrome-associated genes, can contribute to AVSD even in those with isolated heart disease. The identification of a gene set associated with AVSD will facilitate targeted genetic screening in this cohort
Genome-wide association study identifies loci on 12q24 and 13q32 associated with Tetralogy of Fallot
We conducted a genome-wide association study to search for risk alleles associated with Tetralogy of Fallot (TOF), using a northern European discovery set of 835 cases and 5159 controls. A region on chromosome 12q24 was associated (P = 1.4 × 10−7) and replicated convincingly (P = 3.9 × 10−5) in 798 cases and 2931 controls [per allele odds ratio (OR) = 1.27 in replication cohort, P = 7.7 × 10−11 in combined populations]. Single nucleotide polymorphisms in the glypican 5 gene on chromosome 13q32 were also associated (P = 1.7 × 10−7) and replicated convincingly (P = 1.2 × 10−5) in 789 cases and 2927 controls (per allele OR = 1.31 in replication cohort, P = 3.03 × 10−11 in combined populations). Four additional regions on chromosomes 10, 15 and 16 showed suggestive association accompanied by nominal replication. This study, the first genome-wide association study of a congenital heart malformation phenotype, provides evidence that common genetic variation influences the risk of TO
Novel Association of the NOTCH Pathway Regulator MIB1 Gene With the Development of Bicuspid Aortic Valve.
IMPORTANCE
Nonsyndromic bicuspid aortic valve (nsBAV) is the most common congenital heart valve malformation. BAV has a heritable component, yet only a few causative genes have been identified; understanding BAV genetics is a key point in developing personalized medicine.
OBJECTIVE
To identify a new gene for nsBAV.
DESIGN, SETTING, AND PARTICIPANTS
This was a comprehensive, multicenter, genetic association study based on candidate gene prioritization in a familial cohort followed by rare and common association studies in replication cohorts. Further validation was done using in vivo mice models. Study data were analyzed from October 2019 to October 2022. Three cohorts of patients with BAV were included in the study: (1) the discovery cohort was a large cohort of inherited cases from 29 pedigrees of French and Israeli origin; (2) the replication cohort 1 for rare variants included unrelated sporadic cases from various European ancestries; and (3) replication cohort 2 was a second validation cohort for common variants in unrelated sporadic cases from Europe and the US.
MAIN OUTCOMES AND MEASURES
To identify a candidate gene for nsBAV through analysis of familial cases exome sequencing and gene prioritization tools. Replication cohort 1 was searched for rare and predicted deleterious variants and genetic association. Replication cohort 2 was used to investigate the association of common variants with BAV.
RESULTS
A total of 938 patients with BAV were included in this study: 69 (7.4%) in the discovery cohort, 417 (44.5%) in replication cohort 1, and 452 (48.2%) in replication cohort 2. A novel human nsBAV gene, MINDBOMB1 homologue MIB1, was identified. MINDBOMB1 homologue (MIB1) is an E3-ubiquitin ligase essential for NOTCH-signal activation during heart development. In approximately 2% of nsBAV index cases from the discovery and replication 1 cohorts, rare MIB1 variants were detected, predicted to be damaging, and were significantly enriched compared with population-based controls (2% cases vs 0.9% controls; P = .03). In replication cohort 2, MIB1 risk haplotypes significantly associated with nsBAV were identified (permutation test, 1000 repeats; P = .02). Two genetically modified mice models carrying Mib1 variants identified in our cohort showed BAV on a NOTCH1-sensitized genetic background.
CONCLUSIONS AND RELEVANCE
This genetic association study identified the MIB1 gene as associated with nsBAV. This underscores the crucial role of the NOTCH pathway in the pathophysiology of BAV and its potential as a target for future diagnostic and therapeutic intervention.This study was supported in
part by grants PID2019-104776RB-I00 and CB16/
11/00399 (Dr de la Pompa) from the Spanish
Ministerio de Ciencia e Innovación (MCIN/ AEI/
10.13039/501100011033/); a grant from Hadassah
France Association (Drs Gilon and Tessler); a grant
from the Center for Interdisciplinary Data Science
Research of the Hebrew University of Jerusalem
(Dr Tessler); grant R35 CA220340 from the
National Institutes of Health (Dr Blacklow), and
grants R21HL150373, R01HL114823 (Dr Body); BSF
grants 2013269 and 2017245 (Drs. Sprinzak and
Blacklow); a consolidator grant from the European
Research Council (Genomia –
ERC-COG-2017-771945; Dr Loeys); the European
Reference Network on rare multisystemic vascular
disorders (VASCERN - project ID: 769036 partly
cofunded by the European Union Third Health
Programme (Drs Loeys and Verstraeten); funding
from the Outreach project (Dutch Heart
Foundation; Dr Luyckx); funding from Heart and
Stroke Foundation of Canada/Robert M Freedom
Chair of Cardiovascular Science (Dr Mital); sample
biobanking and sequencing from Canada were
supported by grants from the Leducq Foundation
Transatlantic Networks of Excellence grant, and the
Ted Rogers Centre for Heart Research; ISF grant
1053/12 (Dr Durst); and grant R01HL150401 from National Heart, Lung, and Blood Institute
(Dr Muehlschlegel).S
- …