7 research outputs found

    A Mechanistic Study of the Oxidative Reaction of Hydrogen-Terminated Si(111) Surfaces with Liquid Methanol

    Get PDF
    H–Si­(111) surfaces have been reacted with liquid methanol (CH<sub>3</sub>OH) in the absence or presence of a series of oxidants and/or illumination. Oxidant-activated methoxylation of H–Si(111) surfaces was observed in the dark after exposure to CH<sub>3</sub>OH solutions that contained the one-electron oxidants acetylferrocenium, ferrocenium, or 1,1′-dimethylferrocenium. The oxidant-activated reactivity toward CH<sub>3</sub>OH of intrinsic and n-type H–Si(111) surfaces increased upon exposure to ambient light. The results suggest that oxidant-activated methoxylation requires that two conditions be met: (1) the position of the quasi-Fermi levels must energetically favor oxidation of the H–Si(111) surface and (2) the position of the quasi-Fermi levels must energetically favor reduction of an oxidant in solution. Consistently, illuminated n-type H–Si(111) surfaces underwent methoxylation under applied external bias more rapidly and at more negative potentials than p-type H–Si­(111) surfaces. The results under potentiostatic control indicate that only conditions that favor oxidation of the H–Si(111) surface need be met, with charge balance at the surface maintained by current flow at the back of the electrode. The results are described by a mechanistic framework that analyzes the positions of the quasi-Fermi levels relative to the energy levels relevant for each system

    Profiling Photoinduced Carrier Generation in Semiconductor Microwire Arrays via Photoelectrochemical Metal Deposition

    Get PDF
    Au was photoelectrochemically deposited onto cylindrical or tapered p-Si microwires on Si substrates to profile the photoinduced charge-carrier generation in individual wires in a photoactive semiconductor wire array. Similar experiments were repeated for otherwise identical Si microwires doped to be n-type. The metal plating profile was conformal for n-type wires, but for p-type wires was a function of distance from the substrate and was dependent on the illumination wavelength. Spatially resolved charge-carrier generation profiles were computed using full-wave electromagnetic simulations, and the localization of the deposition at the p-type wire surfaces observed experimentally correlated well with the regions of enhanced calculated carrier generation in the volumes of the microwires. This technique could potentially be extended to determine the spatially resolved carrier generation profiles in a variety of mesostructured, photoactive semiconductors

    Revisiting an Ongoing Debate: What Role Do Surface Groups Play in Silicon Nanocrystal Photoluminescence?

    No full text
    The origin of photoluminescence (PL) in silicon nanocrystals (SiNCs) remains a subject of considerable debate. Size-dependent PL that supports the quantum confinement model has been proposed by several researchers. On the other hand, SiNC PL arising from surface states that are independent of nanocrystal size has also been shown. This work addresses the origin of surface-functionalized SiNC PL as relating to surface states and the NC size. SiNCs of different sizes (3 and 5 nm diameters) were prepared with three distinct surface chemistries. Steady-state and time-resolved PL measurements were performed at temperatures ranging from 37 to 377 K. Temperature-dependent luminescence consistent with core emission was observed for alkyl-terminated SiNCs, while alkylamine-functionalized SiNCs displayed minimal temperature-dependent luminescence, consistent with a charge-transfer mechanism. Lightly oxidized alkyl SiNCs had similar emission profiles to alkyl SiNCs; however, they showed longer luminescence lifetimes and their luminescence spectrum was shifted to shorter wavelengths than their nonoxidized counterparts. A general mechanism is proposed to explain all three phenomena, suggesting that surface groups play a crucial role in SiNC optical response

    Size <i>vs</i> Surface: Tuning the Photoluminescence of Freestanding Silicon Nanocrystals Across the Visible Spectrum <i>via</i> Surface Groups

    No full text
    The syntheses of colloidal silicon nanocrystals (Si-NCs) with dimensions in the 3–4 nm size regime as well as effective methodologies for their functionalization with alkyl, amine, phosphine, and acetal functional groups are reported. Through rational variation in the surface moieties we demonstrate that the photoluminescence of Si-NCs can be effectively tuned across the entire visible spectral region without changing particle size. The surface-state dependent emission exhibited short-lived excited-states and higher relative photoluminescence quantum yields compared to Si-NCs of equivalent size exhibiting emission originating from the band gap transition. The Si-NCs were exhaustively characterized using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transformed infrared spectroscopy (FTIR), and their optical properties were thoroughly investigated using fluorescence spectroscopy, excited-state lifetime measurements, photobleaching experiments, and solvatochromism studies

    Red States versus Blue States in Colloidal Silicon Nanocrystals: Exciton Sequestration into Low-Density Traps

    No full text
    The ultrafast exciton photodynamics of red-emitting and blue-emitting colloidal Si nanocrystals are contrasted under low (1.5 mJ/cm<sup>2</sup>) and high (9.1 mJ/cm<sup>2</sup>) excitation powers with broadband transient absorption spectroscopy. While the low-power initiated transient signals differ strongly for the two samples, the high-power signals exhibit similar nonmonotonic kinetics, resulting in a new population formed on a 10 to 30-ps time scale with a sample independent spectrum and decay kinetics. This phenomenon is ascribed to the saturation of low-density red-emitting and blue-emitting traps via a state-filling mechanism to populate new meta-stable states at higher excitation powers. The states responsible for blue emission and high-power populations are ascribed to traps from low-density nitrogen and oxygen impurities, respectively, and share similar charge-transfer character with the silicon nanocrystal core

    Evolution of the Ultrafast Photoluminescence of Colloidal Silicon Nanocrystals with Changing Surface Chemistry

    No full text
    The role of surface species in the optical properties of silicon nanocrystals (SiNCs) is the subject of intense debate. Changes in photoluminescence (PL) energy following hydrosilylation of SiNCs with alkyl-terminated surfaces are most often ascribed to enhanced quantum confinement in the smaller cores of oxidized NCs or to oxygen-induced defect emission. We have investigated the PL properties of alkyl-functionalized SiNCs prepared using two related methods: thermal and photochemical hydrosilylation. Photochemically functionalized SiNCs exhibit higher emission energies than the thermally functionalized equivalent. While microsecond lifetime emission attributed to carrier recombination within the NC core was observed from all samples, much faster, size-independent nanosecond lifetime components were only observed in samples prepared using photochemical hydrosilylation that possessed substantial surface oxidation. In addition, photochemically modified SiNCs exhibit higher absolute photoluminescent quantum yields (AQY), consistent with radiative recombination processes occurring at the oxygen-based defects. Correlating spectrally- and time-resolved PL measurements and XPS-derived relative surface oxidation for NCs prepared using different photoassisted hydrosilylation reaction times provides evidence the PL blue-shift as well as the short-lived PL emission observed for photochemically functionalized SiNCs are related to the relative concentration of oxygen surface defects

    Chemical Insight into the Origin of Red and Blue Photoluminescence Arising from Freestanding Silicon Nanocrystals

    No full text
    Silicon nanocrystals (Si NCs) are attractive functional materials. They are compatible with standard electronics and communications platforms and are biocompatible. Numerous methods have been developed to realize size-controlled Si NC synthesis. While these procedures produce Si NCs that appear identical, their optical responses can differ dramatically. Si NCs prepared using high-temperature methods routinely exhibit photoluminescence agreeing with the effective mass approximation (EMA), while those prepared <i>via</i> solution methods exhibit blue emission that is somewhat independent of particle size. Despite many proposals, a definitive explanation for this difference has been elusive for no less than a decade. This apparent dichotomy brings into question our understanding of Si NC properties and potentially limits the scope of their application. The present contribution takes a substantial step forward toward identifying the origin of the blue emission that is not expected based upon EMA predictions. It describes a detailed comparison of Si NCs obtained from three of the most widely cited procedures as well as the conversion of red-emitting Si NCs to blue emitters upon exposure to nitrogen-containing reagents. Analysis of the evidence is consistent with the hypothesis that the presence of trace nitrogen and oxygen even at the parts per million level in Si NCs gives rise to the blue emission
    corecore