29 research outputs found

    Clustering Human Trust Dynamics for Customized Real-time Prediction

    Full text link
    Trust calibration is necessary to ensure appropriate user acceptance in advanced automation technologies. A significant challenge to achieve trust calibration is to quantitatively estimate human trust in real-time. Although multiple trust models exist, these models have limited predictive performance partly due to individual differences in trust dynamics. A personalized model for each person can address this issue, but it requires a significant amount of data for each user. We present a methodology to develop customized model by clustering humans based on their trust dynamics. The clustering-based method addresses the individual differences in trust dynamics while requiring significantly less data than personalized model. We show that our clustering-based customized models not only outperform the general model based on entire population, but also outperform simple demographic factor-based customized models. Specifically, we propose that two models based on ``confident'' and ``skeptical'' group of participants, respectively, can represent the trust behavior of the population. The ``confident'' participants, as compared to the ``skeptical'' participants, have higher initial trust levels, lose trust slower when they encounter low reliability operations, and have higher trust levels during trust-repair after the low reliability operations. In summary, clustering-based customized models improve trust prediction performance for further trust calibration considerations.Comment: To be published in 2021 IEEE 24rd International Conference on Intelligent Transportation Systems (ITSC

    ViCor: Bridging Visual Understanding and Commonsense Reasoning with Large Language Models

    Full text link
    In our work, we explore the synergistic capabilities of pre-trained vision-and-language models (VLMs) and large language models (LLMs) for visual commonsense reasoning (VCR). We categorize the problem of VCR into visual commonsense understanding (VCU) and visual commonsense inference (VCI). For VCU, which involves perceiving the literal visual content, pre-trained VLMs exhibit strong cross-dataset generalization. On the other hand, in VCI, where the goal is to infer conclusions beyond image content, VLMs face difficulties. We find that a baseline where VLMs provide perception results (image captions) to LLMs leads to improved performance on VCI. However, we identify a challenge with VLMs' passive perception, which often misses crucial context information, leading to incorrect or uncertain reasoning by LLMs. To mitigate this issue, we suggest a collaborative approach where LLMs, when uncertain about their reasoning, actively direct VLMs to concentrate on and gather relevant visual elements to support potential commonsense inferences. In our method, named ViCor, pre-trained LLMs serve as problem classifiers to analyze the problem category, VLM commanders to leverage VLMs differently based on the problem classification, and visual commonsense reasoners to answer the question. VLMs will perform visual recognition and understanding. We evaluate our framework on two VCR benchmark datasets and outperform all other methods that do not require in-domain supervised fine-tuning

    Boosting Standard Classification Architectures Through a Ranking Regularizer

    Full text link
    We employ triplet loss as a feature embedding regularizer to boost classification performance. Standard architectures, like ResNet and Inception, are extended to support both losses with minimal hyper-parameter tuning. This promotes generality while fine-tuning pretrained networks. Triplet loss is a powerful surrogate for recently proposed embedding regularizers. Yet, it is avoided due to large batch-size requirement and high computational cost. Through our experiments, we re-assess these assumptions. During inference, our network supports both classification and embedding tasks without any computational overhead. Quantitative evaluation highlights a steady improvement on five fine-grained recognition datasets. Further evaluation on an imbalanced video dataset achieves significant improvement. Triplet loss brings feature embedding characteristics like nearest neighbor to classification models. Code available at \url{http://bit.ly/2LNYEqL}.Comment: WACV 2020 Camera ready + supplementary materia

    The Interaction Gap: A Step Toward Understanding Trust in Autonomous Vehicles Between Encounters

    Full text link
    Shared autonomous vehicles (SAVs) will be introduced in greater numbers over the coming decade. Due to rapid advances in shared mobility and the slower development of fully autonomous vehicles (AVs), SAVs will likely be deployed before privately-owned AVs. Moreover, existing shared mobility services are transitioning their vehicle fleets toward those with increasingly higher levels of driving automation. Consequently, people who use shared vehicles on an "as needed" basis will have infrequent interactions with automated driving, thereby experiencing interaction gaps. Using human trust data of 25 participants, we show that interaction gaps can affect human trust in automated driving. Participants engaged in a simulator study consisting of two interactions separated by a one-week interaction gap. A moderate, inverse correlation was found between the change in trust during the initial interaction and the interaction gap, suggesting people "forget" some of their gained trust or distrust in automation during an interaction gap.Comment: 5 pages, 3 figure

    ジョウホウ ケンサク シツモン オウトウ ニ モトズク サイテキナ タイワ センリャク オ ソナエタ オンセイ ニ ヨル ジョウホウ アンナイ システム

    No full text
    京都大学0048新制・課程博士博士(情報学)甲第13976号情博第291号新制||情||57(附属図書館)UT51-2008-C892京都大学大学院情報学研究科知能情報学専攻(主査)教授 河原 達也, 教授 奥乃 博, 教授 黒橋 禎夫学位規則第4条第1項該当Doctor of InformaticsKyoto UniversityDA
    corecore