16 research outputs found

    Synthesis of IB-01212 by multiple N-methylations of peptide bonds.

    Get PDF
    There are many natural peptides with multiple N-methylamino acids that exhibit potent attractive biological activities. N-methylation of a peptide bond(s) is also one of the standard approaches in medicinal chemistry of bioactive peptides, to improve the potency and physicochemical properties, especially membrane permeability. In this study, we investigated a facile synthesis process of N-methylated peptides via simultaneous N-methylation of several peptide bonds in the presence of peptide bonds that were not to be methylated. As a model study, we investigated the synthesis of the antiproliferative depsipeptide, IB-01212. We used a pseudoproline to protect the non-methylated peptide bond during a simultaneous N-methylation with MeI-Ag[2]O. Using further manipulations including a dimerization/cyclization process, IB-01212 and its derivatives were successfully synthesized. A preliminary structure-activity relationship study demonstrated that the symmetric structure contributed to the potent cytotoxic activity of IB-01212

    Design and synthesis of fluorescent probes for GPR54.

    Get PDF
    Kisspeptins are neuropeptides that induce the secretion of gonadotropin-releasing hormone via the activation of the cognate receptor, G-protein coupled receptor 54 (GPR54). The kisspeptin-GPR54 axis is associated with the onset of puberty and the maintenance of the reproductive system. In this study, several fluorescent probes have been designed and synthesized for rat GPR54 through the modification of the N-terminus of rat kisspeptins to allow for the visualization of the expression and localization of kisspeptin receptor(s) in living cells and native tissues. The tetramethylrhodamine (TMR) and rhodamine green (RG)-labeled kisspeptins exhibited good binding and agonistic activities towards GPR54, and the results of the application studies demonstrated that these fluorescent probes could be used effectively for the detection of GPR54 receptors in flow cytometry and confocal microscopy experiments

    Structure–activity relationship study on senktide for development of novel potent neurokinin-3 receptor selective agonists

    Get PDF
    Neurokinin B (NKB) regulates the secretion of gonadotropin-releasing hormone (GnRH) in the hypothalamus via activation of the cognate neurokinin-3 receptor (NK3R). The stimulatory effect of NKB and the derivatives on gonadotropin secretion can potentially be used for development of novel regulatory and therapeutic agents for reproductive dysfunctions. Here, we report a comprehensive structure–activity relationship study on the NK3R-selective agonist peptide, senktide. Substitution of the N-terminal succinyl-Asp substructure in senktide with oxalyl-Glu, oxalyl-D-Glu or oxalyl-L-2-aminoadipic acid (Aad) increased receptor binding and NK3R activation. Among these modifications, the oxalyl-D-Glu substructure prevented neutral endopeptidase (NEP) 24.11-mediated degradation, thus providing a novel NK3R agonist peptide with favourable biological and stability properties

    生殖内分泌系を制御する神経ペプチド受容体リガンドの創製研究

    Get PDF
    京都大学0048新制・課程博士博士(薬科学)甲第18929号薬科博第43号新制||薬||5(附属図書館)31880京都大学大学院薬学研究科医薬創成情報科学専攻(主査)教授 大野 浩章, 教授 高須 清誠, 教授 竹本 佳司学位規則第4条第1項該当Doctor of Pharmaceutical SciencesKyoto UniversityDFA

    Structure-activity relationship study of tachykinin peptides for the development of novel neurokinin-3 receptor selective agonists.

    Get PDF
    Neurokinin B (NKB) is a potential regulator of pulsatile gonadotropin-releasing hormone (GnRH) secretion via activation of the neurokinin-3 receptor (NK3R). NKB with the consensus sequence of the tachykinin peptide family also binds to other tachykinin receptors [neurokinin-1 receptor (NK1R) and neurokinin-2 receptor (NK2R)] with low selectivity. In order to identify the structural requirements for the development of novel potent and selective NK3R agonists, a structure-activity relationship (SAR) study of [MePhe(7)]-NKB and other naturally occurring tachykinin peptides was performed. The substitutions to naturally occurring tachykinins with Asp and MePhe improved the receptor binding and agonistic activity for NK3R. The corresponding substitutions to NKB provided an NK3R selective analog

    Optimization of diaryl amine derivatives as kinesin spindle protein inhibitors.

    Get PDF
    Structure-activity relationship studies of diaryl amine-type KSP inhibitors were carried out. Diaryl amine derivatives with a pyridine ring or urea group were less active when compared with the parent carboline and carbazole derivatives. Optimization studies of a lactam-fused diphenylamine-type KSP inhibitor revealed that the aniline NH group and 3-CF3 phenyl group were indispensable for potent KSP inhibition. Modification with a seven-membered lactam-fused phenyl group and a 4-(trifluoromethyl)pyridin-2-yl group improved aqueous solubility while maintaining potent KSP inhibitory activity. From these studies, we identified novel diaryl amine-type KSP inhibitors with a favorable balance of potency and solubility

    Characterization of the receptor binding residues of kisspeptins by positional scanning using peptide photoaffinity probes.

    Get PDF
    Kisspeptins, endogenous peptide ligands for GPR54, play an important role in GnRH secretion. Since in vivo administration of kisspeptins induces increased plasma LH levels, GPR54 agonists hold promise as therapeutic agents for the treatment of hormonal secretion diseases. To facilitate the design of novel potent GPR54 ligands, residues in kisspeptins that involve in the interaction with GPR54 were investigated by kisspeptin-based photoaffinity probes. Herein, we report the design and synthesis of novel kisspeptin-based photoaffinity probes, and the application to crosslinking experiments for GPR54-expressing cells

    Synthesis and biological evaluation of the [d-MeAla(11)]-epimer of coibamide A.

    Get PDF
    Coibamide A is a highly potent antiproliferative cyclic depsipeptide, which was originally isolated from a Panamanian marine cyanobacterium. In this study, the synthesis of coibamide A has been investigated using Fmoc-based solid-phase peptide synthesis followed by the cleavage of the resulting linear peptide from the resin and its subsequent macrolactonization. The peptide sequence of the linear coibamide A precursor was constructed on a solid-support following the optimization of the coupling conditions, where numerous coupling agents were evaluated. The macrocyclization of the resulting linear peptide provided the [d-MeAla(11)]-epimer of coibamide A, which exhibited nanomolar cytotoxic activity towards a number of human cancer cell lines

    Design and synthesis of a novel class of CK2 inhibitors: application of copper- and gold-catalysed cascade reactions for fused nitrogen heterocycles.

    Get PDF
    Two classes of fused nitrogen heterocycles were designed as CK2 inhibitor candidates on the basis of previous structure-activity relationship (SAR) studies. Various dipyrrolo[3, 2-b:2', 3'-e]pyridine and benzo[g]indazole derivatives were prepared using transition-metal-catalysed cascade and/or multicomponent reactions. Biological evaluation of these candidates revealed that benzo[g]indazole is a promising scaffold for potent CK2 inhibitors. The inhibitory activities on cell proliferation of these potent CK2 inhibitors are also presented
    corecore