51 research outputs found

    The Generalized Stochastic Microdosimetric Model: the main formulation

    Full text link
    The present work introduces a rigorous stochastic model, named Generalized Stochastic Microdosimetric Model (GSM2), to describe biological damage induced by ionizing radiation. Starting from microdosimetric spectra of energy deposition in tissue, we derive a master equation describing the time evolution of the probability density function of lethal and potentially lethal DNA damage induced by radiation in a cell nucleus. The resulting probability distribution is not required to satisfy any a priori assumption. Furthermore, we generalized the master equation to consider damage induced by a continuous dose delivery. In addition, spatial features and damage movement inside the nucleus have been taken into account. In doing so, we provide a general mathematical setting to fully describe the spatiotemporal damage formation and evolution in a cell nucleus. Finally, we provide numerical solutions of the master equation exploiting Monte Carlo simulations to validate the accuracy of GSM2. Development of GSM2 can lead to improved modeling of radiation damage to both tumor and normal tissues, and thereby impact treatment regimens for better tumor control and reduced normal tissue toxicities

    RNA-­seq analysis of Eucalyptus genotypes that differ in carbon allocation.

    Get PDF
    Carbon allocation is the process of translocation of photosynthate from source to sink organs, and though its physiology is well known, the genetic mechanisms involved in its regulation are still poorly understood. Since differences in levels of gene expression may largely explain the observed phenotypic variation, and there is great variability among species of Eucalyptus, we decided to perform a gene expression analysis of four contrasting Eucalyptus genotypes to gain insight into the mechanisms that lead to differences in carbon allocation.X-MEETING 2012

    Computação da Seleção Genômica Ampla (GWS).

    Get PDF
    Métodos para GWS; Teoria dos métodos de regressão; Computação do método Random (Ridge) Regression BLUP (RR-BLUP/GWS); Fenótipos corrigidos; Frequências alélicas, variância dos marcadores e herdabilidade; Marcadores codominantes (SNP) ? Modelo genotípico; Marcadores dominantes (DArT) - Modelo genotípico; Marcadores codominantes (SNP) ? Modelo gamético ou alélico; Número de marcadores com efeitos significativos; Populações de estimação, validação e seleção; População de validação e Jacknife; Correlação e regressão entre valores genéticos preditos e fenótipos na população de validação; Análise de associação na GWAS; Software Selegen Genômica: Random (Ridge) Regression BLUP: RR-BLUP/GWS; Exemplo aplicado ao melhoramento do eucalipto.bitstream/item/31426/1/Doc210.pd

    A post-labeling method for multiplexed and multicolored genotyping analysis of SSR, indel and SNP markers in single tube with bar-coded split tag (BStag)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genotyping analysis using capillary DNA sequencing with fluorescently labeled primer pairs obtained by polymerase chain reaction (PCR) is widely used, but is expensive. The post-PCR labeling method using fluorescently labeled short oligonucleotides and nested PCR of the amplified product obtained from unlabeled primer pairs is a simple and inexpensive alternative. However, previously reported protocols often produced spurious peaks or inconsistent amplification under multiplexed analysis as a result of simultaneous progress of both the amplification and labeling reactions and local homology of the attached tag sequence.</p> <p>Results</p> <p>A set of 16 bp-long oligonucleotide sequences termed bar-coded split tag (BStag), comprising a common basal region, a three-nucleotide 'bar-code' sequence, and a mismatched nucleotide at the middle position were designed for selective post-PCR labeling. The BStag was attached at the 5' end of the forward primer of interest. The melting temperature of the BStag was low enough to separate the labeling reaction from initial PCR amplification, and each sequence was minimally divergent but maintained maximum selectivity. Post-PCR labeling of the amplified product was achieved by extending for three cycles at a lower annealing temperature after the conventional amplification program with the appropriate fluorescently labeled BStag primer. No amplification was confirmed with BStag primers for 12 plant species. The electropherogram of the labeled product obtained using this method was consistent with that of prelabeled primer, except for their apparent size.</p> <p>Conclusions</p> <p>BStag enabled multiplexed post-PCR labeling of simple sequence repeat or insertion/deletion markers with different dyes in a single tube. BStag in conjunction with locus specific oligo and allele specific oligo was also useful for single nucleotide polymorphism analysis. The labeling protocol was simple and no additional operation was required. Single-tube multiplexed post-PCR labeling is useful for a wide variety of genotyping studies with maximal flexibility and minimal costs.</p
    corecore