5 research outputs found

    A characterization of the molecular phenotype and inflammatory response of schizophrenia patient-derived microglia-like cells

    Get PDF
    Different lines of evidence support a causal role for microglia in the pathogenesis of schizophrenia. However, how schizophrenia patient-derived microglia are affected at the phenotypic and functional level is still largely unknown. We used a recently described model to induce patient-derived microglia-like cells and used this to analyze changes in the molecular phenotype and function of myeloid cells in schizophrenia. We isolated monocytes from twenty recent-onset schizophrenia patients and twenty non-psychiatric controls. We cultured the cells towards an induced microglia-like phenotype (iMG), analyzed the phenotype of the cells by RNA sequencing and mass cytometry, and their response to LPS. Mass cytometry showed a high heterogeneity of iMG in cells derived from patients as well as controls. The prevalence of two iMG clusters was significantly higher in schizophrenia patients (adjusted p-value <0.001). These subsets are characterized by expression of ApoE, Ccr2, CD18, CD44, and CD95, as well as IRF8, P2Y(12), Cx3cr1 and HLA-DR. In addition, we found that patient derived iMG show an enhanced response to LPS, with increased secretion of TNF-alpha. Further studies are needed to replicate these findings, to determine whether similar subclusters are present in schizophrenia patients in vivo, and to address how these subclusters are related to the increased response to LPS, as well as other microglial functions

    SARS-CoV-2 infection, inflammation and birth outcomes in a prospective NYC pregnancy cohort

    Get PDF
    Associations between antenatal SARS-CoV-2 infection and pregnancy outcomes have been conflicting and the role of the immune system is currently unclear. This prospective cohort study investigated the interaction of antenatal SARS-CoV-2 infection, changes in cytokine and HS-CRP levels, birthweight and gestational age at birth. 2352 pregnant participants from New York City (2020–2022) were included. Plasma levels of interleukin (IL)-1β, IL-6, IL-17A and high-sensitivity C-reactive protein (HS-CRP) were quantified in blood specimens obtained across pregnancy. Quantile and linear regression models were conducted to 1) assess the impact of antenatal SARS-CoV-2 infection, overall and by timing of detection of SARS-CoV-2 positivity (&lt; 20 weeks versus ≥ 20 weeks), on birthweight and gestational age at delivery; 2) examine the relationship between SARS-CoV-2 infection and maternal immune changes during pregnancy. All models were adjusted for maternal demographic and obstetric factors and pandemic timing. Birthweight models were additionally adjusted for gestational age at delivery and fetal sex. Immune marker models were also adjusted for gestational age at specimen collection and multiplex assay batch. 371 (15.8%) participants were infected with SARS-CoV-2 during pregnancy, of which 98 (26.4%) were infected at &lt; 20 weeks gestation. Neither SARS-CoV-2 infection in general nor in early or late pregnancy was associated with lower birthweight nor earlier gestational age at delivery. Further, we did not observe cytokine or HS-CRP changes in response to SARS-CoV-2 infection and thus found no evidence to support a potential association between immune dysregulation and the diversity in pregnancy outcomes following infection.</p

    Genetic analysis of the human microglial transcriptome across brain regions, aging and disease pathologies

    No full text
    Microglia have emerged as important players in brain aging and pathology. To understand how genetic risk for neurological and psychiatric disorders is related to microglial function, large transcriptome studies are essential. Here we describe the transcriptome analysis of 255 primary human microglial samples isolated at autopsy from multiple brain regions of 100 individuals. We performed systematic analyses to investigate various aspects of microglial heterogeneities, including brain region and aging. We mapped expression and splicing quantitative trait loci and showed that many neurological disease susceptibility loci are mediated through gene expression or splicing in microglia. Fine-mapping of these loci nominated candidate causal variants that are within microglia-specific enhancers, finding associations with microglial expression of USP6NL for Alzheimer's disease and P2RY12 for Parkinson's disease. We have built the most comprehensive catalog to date of genetic effects on the microglial transcriptome and propose candidate functional variants in neurological and psychiatric disorders

    Opportunistic yeast pathogens: reservoirs, virulence mechanisms, and therapeutic strategies

    No full text
    corecore