8 research outputs found

    Multicriteria Decision-Making in Complex Quality Evaluation of Ladies Dress Material

    No full text
    Quality is the essence of any product for consumer satisfaction. However, different people have different perception of quality. Eventually the definition of quality varies from product to product and thus it is much more complex in textile clothing material evaluation. The end use application of a specific clothing material determines what should be the parameters of quality evaluation. Thus, the evaluation based on subjective assessment becomes unpredictable and unquantifiable. Quality for dress materials is not simply a physical parameter but something called as psycho-physical parameter. In recent times, many objective evaluation systems have been developed to evaluate the apparel grade textile materials with regard to their quality parameters. However, the evaluation does not involve enough statistical treatment of data so as to obtain a parametric weighted characterization of complex quality. The current work deals with parametric approach to complex quality evaluation based on multicriteria decision-making approach for ladies dress materials. The ladies dress materials are of numerous varieties and choices across the globe. The selection and marketing of these kinds of textile materials need to be given proper emphasis as it depends not only on physical parameters but also on climate, geography, ethnic group, market trend, age group, gender, and many such complex parameters, which are not quantifiable in absolute terms. In this study, woven fabrics used for ladies dress materials are collected from the market and they were evaluated for the consumer-oriented property parameters. A parametric approach is adopted to quantify the overall quality of these dress materials. Various objective techniques were used to evaluate the comfort and esthetic parameters. A complex quality index (CQI) was estimated with weighted combination of all the contributing parameters and total quality index was calculated. Selected consumers with different education level, age, and gender were interviewed to get a statistic of their opinion about quality parameters preferred by them. This complex quality index/degree of satisfaction shows very high correlation with subjective judgment. A CQI can be evaluated for each kind of clothing material looking into their applications

    Multicriteria Decision-Making in Complex Quality Evaluation of Ladies Dress Material

    No full text
    Quality is the essence of any product for consumer satisfaction. However, different people have different perception of quality. Eventually the definition of quality varies from product to product and thus it is much more complex in textile clothing material evaluation. The end use application of a specific clothing material determines what should be the parameters of quality evaluation. Thus, the evaluation based on subjective assessment becomes unpredictable and unquantifiable. Quality for dress materials is not simply a physical parameter but something called as psycho-physical parameter. In recent times, many objective evaluation systems have been developed to evaluate the apparel grade textile materials with regard to their quality parameters. However, the evaluation does not involve enough statistical treatment of data so as to obtain a parametric weighted characterization of complex quality. The current work deals with parametric approach to complex quality evaluation based on multicriteria decision-making approach for ladies dress materials. The ladies dress materials are of numerous varieties and choices across the globe. The selection and marketing of these kinds of textile materials need to be given proper emphasis as it depends not only on physical parameters but also on climate, geography, ethnic group, market trend, age group, gender, and many such complex parameters, which are not quantifiable in absolute terms. In this study, woven fabrics used for ladies dress materials are collected from the market and they were evaluated for the consumer-oriented property parameters. A parametric approach is adopted to quantify the overall quality of these dress materials. Various objective techniques were used to evaluate the comfort and esthetic parameters. A complex quality index (CQI) was estimated with weighted combination of all the contributing parameters and total quality index was calculated. Selected consumers with different education level, age, and gender were interviewed to get a statistic of their opinion about quality parameters preferred by them. This complex quality index/degree of satisfaction shows very high correlation with subjective judgment. A CQI can be evaluated for each kind of clothing material looking into their applications

    COMPLEX QUALITY INDEX FOR CONSUMER CLOTHING

    No full text

    Effect of Electrospun Nanofiber Deposition on Thermo-physiology of Functional Clothing

    No full text
    The present work focuses on developing electrospun nanofibers using wire electrospinning and deposition of such nanofibrous layer on the clothing textiles. The porosity and permeability of the fabrics are substantially influenced by deposition of nanofibers on woven textiles. Cotton, Kevlar and Nomex fabrics have been selected as the substrate material. They are extensively used in the military sector for uniform of defence personnel. The emergence of nanofiber technology with the advent of needle-less electrospinning has enabled researchers to apply such materials to existing fabrics. Nylon 6 (PA6) nanofibers are spun by wire electrode spinning and deposited on selected clothing fabrics. The fabrics so developed are compared with control fabric samples for understanding the influence on thermal and physiological properties. The thermal comfort is influenced mainly by porosity and thickness of the fabric ensemble. Air permeability results are significantly influenced by nanofiber deposition. A further study on moisture management properties is also carried out. The thermal and physiological comfort is influenced mainly by porosity and thickness of the fabric ensemble. The nanofiber deposition on base fabric significantly influences water vapor and liquid water transmission related properties
    corecore