38 research outputs found

    A Decidable Timeout based Extension of Propositional Linear Temporal Logic

    Full text link
    We develop a timeout based extension of propositional linear temporal logic (which we call TLTL) to specify timing properties of timeout based models of real time systems. TLTL formulas explicitly refer to a running global clock together with static timing variables as well as a dynamic variable abstracting the timeout behavior. We extend LTL with the capability to express timeout constraints. From the expressiveness view point, TLTL is not comparable with important known clock based real-time logics including TPTL, XCTL, and MTL, i.e., TLTL can specify certain properties, which cannot be specified in these logics (also vice-versa). We define a corresponding timeout tableau for satisfiability checking of the TLTL formulas. Also a model checking algorithm over timeout Kripke structure is presented. Further we prove that the validity checking for such an extended logic remains PSPACE-complete even in the presence of timeout constraints and infinite state models. Under discrete time semantics, with bounded timeout increments, the model-checking problem that if a TLTL-formula holds in a timeout Kripke structure is also PSPACE complete. We further prove that when TLTL is interpreted over discrete time, it can be embedded in the monadic second order logic with time, and when TLTL is interpreted over dense time without the condition of non-zenoness, the resulting logic becomes Σ11\Sigma_1^1-complete

    A Randomized Algorithm for 3-SAT

    Full text link
    In this work we propose and analyze a simple randomized algorithm to find a satisfiable assignment for a Boolean formula in conjunctive normal form (CNF) having at most 3 literals in every clause. Given a k-CNF formula phi on n variables, and alpha in{0,1}^n that satisfies phi, a clause of phi is critical if exactly one literal of that clause is satisfied under assignment alpha. Paturi et. al. (Chicago Journal of Theoretical Computer Science 1999) proposed a simple randomized algorithm (PPZ) for k-SAT for which success probability increases with the number of critical clauses (with respect to a fixed satisfiable solution of the input formula). Here, we first describe another simple randomized algorithm DEL which performs better if the number of critical clauses are less (with respect to a fixed satisfiable solution of the input formula). Subsequently, we combine these two simple algorithms such that the success probability of the combined algorithm is maximum of the success probabilities of PPZ and DEL on every input instance. We show that when the average number of clauses per variable that appear as unique true literal in one or more critical clauses in phi is between 1 and 1.9317, combined algorithm performs better than the PPZ algorithm

    Data-Driven Application Maintenance: Views from the Trenches

    Full text link
    In this paper we present our experience during design, development, and pilot deployments of a data-driven machine learning based application maintenance solution. We implemented a proof of concept to address a spectrum of interrelated problems encountered in application maintenance projects including duplicate incident ticket identification, assignee recommendation, theme mining, and mapping of incidents to business processes. In the context of IT services, these problems are frequently encountered, yet there is a gap in bringing automation and optimization. Despite long-standing research around mining and analysis of software repositories, such research outputs are not adopted well in practice due to the constraints these solutions impose on the users. We discuss need for designing pragmatic solutions with low barriers to adoption and addressing right level of complexity of problems with respect to underlying business constraints and nature of data.Comment: Earlier version of paper appearing in proceedings of the 4th International Workshop on Software Engineering Research and Industrial Practice (SER&IP), IEEE Press, pp. 48-54, 201
    corecore