2,203 research outputs found

    Recent Results Regarding Affine Quantum Gravity

    Full text link
    Recent progress in the quantization of nonrenormalizable scalar fields has found that a suitable non-classical modification of the ground state wave function leads to a result that eliminates term-by-term divergences that arise in a conventional perturbation analysis. After a brief review of both the scalar field story and the affine quantum gravity program, examination of the procedures used in the latter surprisingly shows an analogous formulation which already implies that affine quantum gravity is not plagued by divergences that arise in a standard perturbation study. Additionally, guided by the projection operator method to deal with quantum constraints, trial reproducing kernels are introduced that satisfy the diffeomorphism constraints. Furthermore, it is argued that the trial reproducing kernels for the diffeomorphism constraints may also satisfy the Hamiltonian constraint as well.Comment: 32 pages, new features in this alternative approach to quantize gravity, minor typos plus an improved argument in Sec. 9 suggested by Karel Kucha

    Gauge and Averaging in Gravitational Self-force

    Full text link
    A difficulty with previous treatments of the gravitational self-force is that an explicit formula for the force is available only in a particular gauge (Lorenz gauge), where the force in other gauges must be found through a transformation law once the Lorenz gauge force is known. For a class of gauges satisfying a ``parity condition'' ensuring that the Hamiltonian center of mass of the particle is well-defined, I show that the gravitational self-force is always given by the angle-average of the bare gravitational force. To derive this result I replace the computational strategy of previous work with a new approach, wherein the form of the force is first fixed up to a gauge-invariant piece by simple manipulations, and then that piece is determined by working in a gauge designed specifically to simplify the computation. This offers significant computational savings over the Lorenz gauge, since the Hadamard expansion is avoided entirely and the metric perturbation takes a very simple form. I also show that the rest mass of the particle does not evolve due to first-order self-force effects. Finally, I consider the ``mode sum regularization'' scheme for computing the self-force in black hole background spacetimes, and use the angle-average form of the force to show that the same mode-by-mode subtraction may be performed in all parity-regular gauges. It appears plausible that suitably modified versions of the Regge-Wheeler and radiation gauges (convenient to Schwarzschild and Kerr, respectively) are in this class

    Initial data for gravity coupled to scalar, electromagnetic and Yang-Mills fields

    Get PDF
    We give ansatze for solving classically the initial value constraints of general relativity minimally coupled to a scalar field, electromagnetism or Yang-Mills theory. The results include both time-symmetric and asymmetric data. The time-asymmetric examples are used to test Penrose's cosmic censorship inequality. We find that the inequality can be violated if only the weak energy condition holds.Comment: 16 pages, RevTeX, references added, presentational changes, version to appear in Phys Rev.

    A modification of the Chen-Nester quasilocal expressions

    Full text link
    Chen and Nester proposed four boundary expressions for the quasilocal quantities using the covariant Hamiltonian formalism. Based on these four expressions, there is a simple generalization that one can consider, so that a two parameter set of boundary expressions can be constructed. Using these modified expressions, a nice result for gravitational energy-momentum can be obtained in holonomic frames.Comment: 11 page

    Population bound effects on bosonic correlations in non-inertial frames

    Get PDF
    We analyse the effect of bounding the occupation number of bosonic field modes on the correlations among all the different spatial-temporal regions in a setting in which we have a space-time with a horizon along with an inertial observer. We show that the entanglement between A (inertial observer) and R (uniformly accelerated observer) depends on the bound N, contrary to the fermionic case. Whether or not decoherence increases with N depends on the value of the acceleration a. Concerning the bipartition A-antiR (Alice with an observer in Rindler's region IV), we show that no entanglement is created whatever the value of N and a. Furthermore, AR entanglement is very quickly lost for finite N and for infinite N. We will study in detail the mutual information conservation law found for bosons and fermions. By means of the boundary effects associated to N finiteness, we will show that for bosons this law stems from classical correlations while for fermions it has a quantum origin. Finally, we will present the strong N dependence of the entanglement in R-antiR bipartition and compare the fermionic cases with their finite N bosonic analogs. We will also show the anti-intuitive dependence of this entanglement on statistics since more entanglement is created for bosons than for their fermion counterparts.Comment: revtex 4, 12 pages, 10 figures. Added Journal ref

    A new perspective on Gravity and the dynamics of Spacetime

    Full text link
    The Einstein-Hilbert action has a bulk term and a surface term (which arises from integrating a four divergence). I show that one can obtain Einstein's equations from the surface term alone. This leads to: (i) a novel, completely self contained, perspective on gravity and (ii) a concrete mathematical framework in which the description of spacetime dynamics by Einstein's equations is similar to the description of a continuum solid in the thermodynamic limit.Comment: Based on the Essay selected for Honorable Mention in the Gravity Research Foundation Essay Contest, 2005; to appear in the special issue of IJMP

    Post-Newtonian Freely Specifiable Initial Data for Binary Black Holes in Numerical Relativity

    Full text link
    Construction of astrophysically realistic initial data remains a central problem when modelling the merger and eventual coalescence of binary black holes in numerical relativity. The objective of this paper is to provide astrophysically realistic freely specifiable initial data for binary black hole systems in numerical relativity, which are in agreement with post-Newtonian results. Following the approach taken by Blanchet, we propose a particular solution to the time-asymmetric constraint equations, which represent a system of two moving black holes, in the form of the standard conformal decomposition of the spatial metric and the extrinsic curvature. The solution for the spatial metric is given in symmetric tracefree form, as well as in Dirac coordinates. We show that the solution differs from the usual post-Newtonian metric up to the 2PN order by a coordinate transformation. In addition, the solutions, defined at every point of space, differ at second post-Newtonian order from the exact, conformally flat, Bowen-York solution of the constraints.Comment: 41 pages, no figures, accepted for publication in Phys. Rev. D, significant revision in presentation (including added references and corrected typos

    Radiative processes in external gravitational fields

    Full text link
    Kinematically forbidden processes may be allowed in the presence of external gravitational fields. These ca be taken into account by introducing generalized particle momenta. The corresponding transition probabilities can then be calculated to all orders in the metric deviation from the field-free expressions by simply replacing the particle momenta with their generalized counterparts. The procedure applies to particles of any spin and to any gravitational fields. transition probabilities, emission power, and spectra are, to leading order, linear in the metric deviation. It is also shown how a small dissipation term in the particle wave equations can trigger a strong backreaction that introduces resonances in the radiative process and deeply affects the resulting gravitational background.Comment: 5 pages, 1 figur

    Black Hole Solutions of Kaluza-Klein Supergravity Theories and String Theory

    Get PDF
    We find U(1)_{E} \times U(1)_{M} non-extremal black hole solutions of 6-dimensional Kaluza-Klein supergravity theories. Extremal solutions were found by Cveti\v{c} and Youm\cite{C-Y}. Multi black hole solutions are also presented. After electro-magnetic duality transformation is performed, these multi black hole solutions are mapped into the the exact solutions found by Horowitz and Tseytlin\cite{H-T} in 5-dimensional string theory compactified into 4-dimensions. The massless fields of this theory can be embedded into the heterotic string theory compactified on a 6-torus. Rotating black hole solutions can be read off those of the heterotic string theory found by Sen\cite{Sen3}.Comment: 23 pages text(latex), a figure upon reques

    Quantum Perfect-Fluid Kaluza-Klein Cosmology

    Full text link
    The perfect fluid cosmology in the 1+d+D dimensional Kaluza-Klein spacetimes for an arbitrary barotropic equation of state p=nρp= n \rho is quantized by using the Schutz's variational formalism. We make efforts in the mathematics to solve the problems in two cases. For the first case of the stiff fluid n=1n=1 we exactly solve the Wheeler-DeWitt equation when the dd space is flat. After the superposition of the solutions we analyze the Bohmian trajectories of the final-stage wave-packet functions and show that the flat dd spaces and the compact DD spaces will eventually evolve into finite scale functions. For the second case of n1n \approx 1, we use the approximated wavefunction in the Wheeler-DeWitt equation to find the analytic forms of the final-stage wave-packet functions. After analyzing the Bohmian trajectories we show that the flat dd spaces will be expanding forever while the scale function of the contracting DD spaces would not become zero within finite time. Our investigations indicate that the quantum effect in the quantum perfect-fluid cosmology could prevent the extra compact DD spaces in the Kaluza-Klein theory from collapsing into a singularity or that the "crack-of-doom" singularity of the extra compact dimensions is made to occur at t=t=\infty.Comment: Latex 18 pages, add section 2 to introduce the quantization of perfect flui
    corecore