49 research outputs found
In an expanding universe, what doesn't expand?
The expansion of the universe is often viewed as a uniform stretching of
space that would affect compact objects, atoms and stars, as well as the
separation of galaxies. One usually hears that bound systems do not take part
in the general expansion, but a much more subtle question is whether bound
systems expand partially. In this paper, a very definitive answer is given for
a very simple system: a classical "atom" bound by electrical attraction. With a
mathemical description appropriate for undergraduate physics majors, we show
that this bound system either completely follows the cosmological expansion, or
-- after initial transients -- completely ignores it. This "all or nothing"
behavior can be understood with techniques of junior-level mechanics. Lastly,
the simple description is shown to be a justifiable approximation of the
relativistically correct formulation of the problem.Comment: 8 pages, 9 eps figure
Exact Cosmological Solutions of Gravitational Theories
A global picture is drawn tying together most exact cosmological solutions of
gravitational theories in four or more spacetime dimensions.Comment: 11 latex article style page
Quasistationary binary inspiral. I. Einstein equations for the two Killing vector spacetime
The geometry of two infinitely long lines of mass moving in a fixed circular
orbit is considered as a toy model for the inspiral of a binary system of
compact objects due to gravitational radiation. The two Killing fields in the
toy model are used, according to a formalism introduced by Geroch, to describe
the geometry entirely in terms of a set of tensor fields on the two-manifold of
Killing vector orbits. Geroch's derivation of the Einstein equations in this
formalism is streamlined and generalized. The explicit Einstein equations for
the toy model spacetime are derived in terms of the degrees of freedom which
remain after a particular choice of gauge.Comment: 37 pages, REVTeX, one PostScript Figure included with epsfig; minor
formatting changes and copyright notice added for journal publicatio
Event Horizons in Numerical Relativity I: Methods and Tests
This is the first paper in a series on event horizons in numerical
relativity. In this paper we present methods for obtaining the location of an
event horizon in a numerically generated spacetime. The location of an event
horizon is determined based on two key ideas: (1) integrating backward in time,
and (2) integrating the whole horizon surface. The accuracy and efficiency of
the methods are examined with various sample spacetimes, including both
analytic (Schwarzschild and Kerr) and numerically generated black holes. The
numerically evolved spacetimes contain highly distorted black holes, rotating
black holes, and colliding black holes. In all cases studied, our methods can
find event horizons to within a very small fraction of a grid zone.Comment: 22 pages, LaTeX with RevTeX 3.0 macros, 20 uuencoded gz-compressed
postscript figures. Also available at http://jean-luc.ncsa.uiuc.edu/Papers/
Submitted to Physical Review
Gravitational energy
Observers at rest in a stationary spacetime flat at infinity can measure
small amounts of rest-mass+internal energies+kinetic energies+pressure energy
in a small volume of fluid attached to a local inertial frame. The sum of these
small amounts is the total "matter energy" for those observers. The total
mass-energy minus the matter energy is the binding gravitational energy.
Misner, Thorne and Wheeler evaluated the gravitational energy of a
spherically symmetric static spacetime. Here we show how to calculate
gravitational energy in any static and stationary spacetime for isolated
sources with a set of observers at rest.
The result of MTW is recovered and we find that electromagnetic and
gravitational 3-covariant energy densities in conformastatic spacetimes are of
opposite signs. Various examples suggest that gravitational energy is negative
in spacetimes with special symmetries or when the energy-momentum tensor
satisfies usual energy conditions.Comment: 12 pages. Accepted for publication in Class. Quantum Gra
Controlling Chaos through Compactification in Cosmological Models with a Collapsing Phase
We consider the effect of compactification of extra dimensions on the onset
of classical chaotic "Mixmaster" behavior during cosmic contraction. Assuming a
universe that is well-approximated as a four-dimensional
Friedmann-Robertson--Walker model (with negligible Kaluza-Klein excitations)
when the contraction phase begins, we identify compactifications that allow a
smooth contraction and delay the onset of chaos until arbitrarily close the big
crunch. These compactifications are defined by the de Rham cohomology (Betti
numbers) and Killing vectors of the compactification manifold. We find
compactifications that control chaos in vacuum Einstein gravity, as well as in
string theories with N = 1 supersymmetry and M-theory. In models where chaos is
controlled in this way, the universe can remain homogeneous and flat until it
enters the quantum gravity regime. At this point, the classical equations
leading to chaotic behavior can no longer be trusted, and quantum effects may
allow a smooth approach to the big crunch and transition into a subsequent
expanding phase. Our results may be useful for constructing cosmological models
with contracting phases, such as the ekpyrotic/cyclic and pre-big bang models.Comment: 1 figure. v2/v3: minor typos correcte
Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities
We analyze the signal processing required for the optimal detection of a
stochastic background of gravitational radiation using laser interferometric
detectors. Starting with basic assumptions about the statistical properties of
a stochastic gravity-wave background, we derive expressions for the optimal
filter function and signal-to-noise ratio for the cross-correlation of the
outputs of two gravity-wave detectors. Sensitivity levels required for
detection are then calculated. Issues related to: (i) calculating the
signal-to-noise ratio for arbitrarily large stochastic backgrounds, (ii)
performing the data analysis in the presence of nonstationary detector noise,
(iii) combining data from multiple detector pairs to increase the sensitivity
of a stochastic background search, (iv) correlating the outputs of 4 or more
detectors, and (v) allowing for the possibility of correlated noise in the
outputs of two detectors are discussed. We briefly describe a computer
simulation which mimics the generation and detection of a simulated stochastic
gravity-wave signal in the presence of simulated detector noise. Numerous
graphs and tables of numerical data for the five major interferometers
(LIGO-WA, LIGO-LA, VIRGO, GEO-600, and TAMA-300) are also given. The treatment
given in this paper should be accessible to both theorists involved in data
analysis and experimentalists involved in detector design and data acquisition.Comment: 81 pages, 30 postscript figures, REVTE
Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics
A framework is introduced which explains the existence and similarities of
most exact solutions of the Einstein equations with a wide range of sources for
the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian
formulation. This class includes the spatially homogeneous cosmological models
and the astrophysically interesting static spherically symmetric models as well
as the stationary cylindrically symmetric models. The framework involves
methods for finding and exploiting hidden symmetries and invariant submanifolds
of the Hamiltonian formulation of the field equations. It unifies, simplifies
and extends most known work on hypersurface-homogeneous exact solutions. It is
shown that the same framework is also relevant to gravitational theories with a
similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for
publication in Phys. Rev.
Minisuperspace Quantization of "Bubbling AdS" and Free Fermion Droplets
We quantize the space of 1/2 BPS configurations of Type IIB SUGRA found by
Lin, Lunin and Maldacena (hep-th/0409174), directly in supergravity. We use the
Crnkovic-Witten-Zuckerman covariant quantization method to write down the
expression for the symplectic structure on this entire space of solutions. We
find the symplectic form explicitly around AdS_5 x S^5 and obtain a U(1)
Kac-Moody algebra, in precise agreement with the quantization of a system of N
free fermions in a harmonic oscillator potential, as expected from AdS/CFT. As
a cross check, we also perform the quantization around AdS_5 x S^5 by another
method, using the known spectrum of physical perturbations around this
background and find precise agreement with our previous calculation.Comment: 22 Pages + 2 Appendices, JHEP3; v3: explanation of factor 2 mismatch
added, references reordered, published versio
Canonical Gravity, Diffeomorphisms and Objective Histories
This paper discusses the implementation of diffeomorphism invariance in
purely Hamiltonian formulations of General Relativity. We observe that, if a
constrained Hamiltonian formulation derives from a manifestly covariant
Lagrangian, the diffeomorphism invariance of the Lagrangian results in the
following properties of the constrained Hamiltonian theory: the diffeomorphisms
are generated by constraints on the phase space so that a) The algebra of the
generators reflects the algebra of the diffeomorphism group. b) The Poisson
brackets of the basic fields with the generators reflects the space-time
transformation properties of these basic fields. This suggests that in a purely
Hamiltonian approach the requirement of diffeomorphism invariance should be
interpreted to include b) and not just a) as one might naively suppose. Giving
up b) amounts to giving up objective histories, even at the classical level.
This observation has implications for Loop Quantum Gravity which are spelled
out in a companion paper. We also describe an analogy between canonical gravity
and Relativistic particle dynamics to illustrate our main point.Comment: Latex 16 Pages, no figures, revised in the light of referees'
comments, accepted for publication in Classical and Quantum Gravit