518 research outputs found
Humanoid Theory Grounding
In this paper we consider the importance of using a humanoid physical form for a certain proposed kind of robotics, that of theory grounding. Theory grounding involves grounding the theory skills and knowledge of an embodied artificially intelligent (AI) system by developing theory skills and knowledge from the bottom up. Theory grounding can potentially occur in a variety of domains, and the particular domain considered here is that of language. Language is taken to be another problem space in which a system can explore and discover solutions. We argue that because theory grounding necessitates robots experiencing domain information, certain behavioral-form aspects, such as abilities to socially smile, point, follow gaze, and generate manual gestures, are necessary for robots grounding a humanoid theory of language
Towards a Theory Grounded Theory of Language
In this paper, we build upon the idea of theory grounding and propose one specific form of theory grounding, a theory of language. Theory grounding is the idea that we can imbue our embodied artificially intelligent systems with theories by modeling the way humans, and specifically young children, develop skills with theories. Modeling theory development promises to increase the conceptual and behavioral flexibility of these systems. An example of theory development in children is the social understanding referred to as theory of mind. Language is a natural task for theory grounding because it is vital in symbolic skills and apparently necessary in developing theories. Word learning, and specifically developing a concept of words, is proposed as the first step in a theory grounded theory of language
Taking Synchrony Seriously: A Perceptual-Level Model of Infant Synchrony Detection
Synchrony detection between different sensory and/or motor channels appears critically important for young infant learning and cognitive development. For example, empirical studies demonstrate that audio-visual synchrony aids in language acquisition. In this paper we compare these infant studies with a model of synchrony detection based on the Hershey and Movellan (2000) algorithm augmented with methods for quantitative synchrony estimation. Four infant-model comparisons are presented, using audio-visual stimuli of increasing complexity. While infants and the model showed learning or discrimination with each type of stimuli used, the model was most successful with stimuli comprised of one audio and one visual source, and also with two audio sources and a dynamic-face visual motion source. More difficult for the model were stimuli conditions with two motion sources, and more abstract visual dynamics—an oscilloscope instead of a face. Future research should model the developmental pathway of synchrony detection. Normal audio-visual synchrony detection in infants may be experience-dependent (e.g., Bergeson, et al., 2004)
The MINERA Data Acquisition System and Infrastructure
MINERA (Main INjector ExpeRiment -A) is a new few-GeV neutrino
cross section experiment that began taking data in the FNAL NuMI (Fermi
National Accelerator Laboratory Neutrinos at the Main Injector) beam-line in
March of 2010. MINERA employs a fine-grained scintillator detector capable
of complete kinematic characterization of neutrino interactions. This paper
describes the MINERA data acquisition system (DAQ) including the read-out
electronics, software, and computing architecture.Comment: 34 pages, 16 figure
First evidence of coherent meson production in neutrino-nucleus scattering
Neutrino-induced charged-current coherent kaon production,
, is a rare, inelastic electroweak process
that brings a on shell and leaves the target nucleus intact in its ground
state. This process is significantly lower in rate than neutrino-induced
charged-current coherent pion production, because of Cabibbo suppression and a
kinematic suppression due to the larger kaon mass. We search for such events in
the scintillator tracker of MINERvA by observing the final state ,
and no other detector activity, and by using the kinematics of the final state
particles to reconstruct the small momentum transfer to the nucleus, which is a
model-independent characteristic of coherent scattering. We find the first
experimental evidence for the process at significance.Comment: added ancillary file with information about the six kaon candidate
- …
