4 research outputs found

    The Obesity Epidemic

    Get PDF
    The incidence of chronic, noncommunicable diseases, such as heart disease, is increasing at an alarming rate on the global scale. The growing prevalence of overweight and obesity have led to an upsurge in cases of diabetes and other obesity-related diseases. About 18 million people die every year from heart disease, of which diabetes and obesity are major predisposing factors. Worldwide, more than 1.1 billion adults are overweight, 312 million of which are obese. The number of children that are overweight or obese is also growing (Hossain, Parvez et al.). Obesity, and the associated diseases, has become a worldwide epidemic and must be dealt with before the societal, economic, and security implications become too much to handle

    SECAR: A recoil separator for nuclear astrophysics

    No full text
    Proton-and alpha-capture reactions on unstable proton-rich nuclei power astrophysical explosions like novae and X-ray bursts. Direct measurements of these reactions are crucial for understanding the mechanisms behind these explosions and the nucleosynthesis at such sites. The recoil mass separator, SECAR (SEparator for CApture Reactions) at the National Superconducting Cyclotron Laboratory (NSCL) and the Facility for Rare Isotope Beams (FRIB), has been designed with the required sensitivity to study (p,γ) and (α,γ) reactions, directly at astrophysical energies in inverse kinematics, with radioactive beams of masses up to about A = 65. The complete SECAR system, including two Wien Filters for high mass resolution, has been installed at Michigan State University and is currently being commissioned. The present article introduces the SECAR concept, its scientific goals, and provides an update of the current status of the project

    First (p,n) reaction measurement in inverse kinematics with SECAR

    No full text
    Nucleosynthesis in the νp-process occurs in regions of slightly proton-rich nuclei in the neutrino-driven wind of core-collapse supernovae. The process proceeds via a sequence of (p,γ) and (n,p) reactions, and depending on the conditions, may produce elements between Ni and Sn. Recent studies show that a few key (n,p) reactions regulate the efficiency of the neutrino-p process (νp-process). We performed a study of one of such (n,p) reactions via the measurement of the reverse (p,n) in inverse kinematics with SECAR at NSCL/FRIB.Such proton-induced reaction measurements are particularly challenging, as the recoils and the unreacted projectiles have nearly identical masses. An appropriate separation level can be achieved with SECAR, and along with the incoincidence detection of neutrons these measurements become attainable. The preparation of the SECAR system for accommodating its first (p,n) reaction measurement, including the development of alternative ion beam optics, and the setup of the in-coincidence neutron detection, along with discussion on preliminary results from the p(58Fe,n)58Co reaction measurement are presented and discussed

    A technique for studying (n,p) reactions of astrophysical interest using radioactive beams with SECAR

    No full text
    The formation of nuclei in slightly proton-rich regions of the neutrino-driven wind of core-collapse supernovae could be attributed to the neutrino-p process (νp-process). As it proceeds via a sequence of (p,γ) and (n,p) reactions, it may produce elements in the range of Ni and Sn, considering adequate conditions. Recent studies identify a number of decisive (n,p) reactions that control the efficiency of the νp-process. The study of one such (n,p) reaction via the measurement of the reverse (p,n) in inverse kinematics was performed with SECAR at NSCL/FRIB. Proton-induced reaction measurements, especially at the mass region of interest, are notably difficult since the recoils have nearly identical masses as the unreacted projectiles. Such measurements are feasible with the adequate separation level achieved with SECAR, and the in-coincidence neutron detection. Adjustments of the SECAR system for the first (p,n) reaction measurement included the development of new ion beam optics, and the installation of the neutron detection system. The aforementioned developments along with a discussion on the preliminary results of the p(58Fe,n)58Co reaction measurement are presented
    corecore