101 research outputs found

    12^{12}C/13^{13}C ratio in planetary nebulae from the IUE archives

    Get PDF
    We investigated the abundance ratio of 12^{12}C/13^{13}C in planetary nebulae by examining emission lines arising from \ion{C}{3} 2s2p ^3P_{2,1,0} \to 2s^2 ^1S_0. Spectra were retrieved from the International Ultraviolet Explorer archives, and multiple spectra of the same object were coadded to achieve improved signal-to-noise. The 13^{13}C hyperfine structure line at 1909.6 \AA was detected in NGC 2440. The 12^{12}C/13^{13}C ratio was found to be 4.4±\sim4.4\pm1.2. In all other objects, we provide an upper limit for the flux of the 1910 \AA line. For 23 of these sources, a lower limit for the 12^{12}C/13^{13}C ratio was established. The impact on our current understanding of stellar evolution is discussed. The resulting high signal-to-noise \ion{C}{3} spectrum helps constrain the atomic physics of the line formation process. Some objects have the measured 1907/1909 flux ratio outside the low-electron density theoretical limit for 12^{12}C. A mixture of 13^{13}C with 12^{12}C helps to close the gap somewhat. Nevertheless, some observed 1907/1909 flux ratios still appear too high to conform to the presently predicted limits. It is shown that this limit, as well as the 1910/1909 flux ratio, are predominantly influenced by using the standard partitioning among the collision strengths for the multiplet 1S0^1S_0--3PJ^3P_J according to the statistical weights. A detailed calculation for the fine structure collision strengths between these individual levels would be valuable.Comment: ApJ accepted: 19 pages, 3 Figures, 2 Table

    HST Observations and Photoionization Modeling of the LINER Galaxy NGC 1052

    Get PDF
    We present a study of available Hubble Space Telescope (HST) spectroscopic and imaging observations of the low ionization nuclear emission line region (LINER) galaxy NGC 1052. The WFPC2 imagery clearly differentiates extended nebular Halpha emission from that of the compact core. Faint Object Spectrograph (FOS) observations provide a full set of optical and UV data (1200-6800 Angstroms). These spectral data sample the innermost region (0."86 x 0."86 ~ 82pc x 82pc) and exclude the extended Halpha emission seen in the WFPC2 image. The derived emission line fluxes allow a detailed analysis of the physical conditions within the nucleus. The measured flux ratio for Halpha/Hbeta, F{Halpha}/F{Hbeta}=4.53, indicates substantial intrinsic reddening, E(B-V)=0.42, for the nuclear nebular emission. This is the first finding of a large extinction of the nuclear emission line fluxes in NGC 1052. If the central ionizing continuum is assumed to be attenuated by a comparable amount, then the emission line fluxes can be reproduced well by a simple photoionization model using a central power law continuum source with a spectral index of alpha = -1.2 as deduced from the observed flux distribution. A multi-density, dusty gas gives the best fit to the observed emission line spectrum. Our calculations show that the small contribution from a highly ionized gas observed in NGC 1052 can also be reproduced solely by photoionization modeling. The high gas covering factor determined from our model is consistent with the assumption that our line of sight to the central engine is obscured.Comment: 23 pages, 7 Postscript figures, 1 jpeg figure ; uses aaspp4.sty, 11pt to appear in The Astrophysical Journa

    STIS Spectral Imagery of the OB Stars in NGC 604: Describing the Extraction Technique for a Crowded Stellar Field

    Full text link
    We have developed a data reduction procedure to extract multiple spectra from a single two-dimensional Space Telescope Imaging Spectrograph (STIS) image of a crowded stellar field. This paper provides a description of our new technique, utilizing a STIS ultraviolet spectral image, acquired with the G140L grating and the 52 arcsec x 2 arcsec aperture, sampling a concentration of O and B stars in the central region of the NGC 604 starburst in M33. The software routines can disentangle and produce reliable ultraviolet spectra of stars with angular separations as small as 0.055 arcsec. Use of the extraction slit, based upon our model of the spectral cross dispersion profile, generates spectra with slightly higher resolution than the STScI standard processing. Our results clearly show that the spectral imaging capability of STIS represents a powerful tool for studying luminous stars in the star-forming regions of the Local Group.Comment: LaTeX, 23 pages total (including 11 figures and 1 table). To be published in June 2003 of The Astronomical Journal. Companion paper to "STIS Spectral Imagery of the OB Stars in NGC 604: The Most Luminous Stars" by Bruhweiler, Miskey, & Smith Neubi

    Regulation of DNA transposition by CpG methylation and chromatin structure in human cells

    Get PDF
    BACKGROUND: The activity of transposable elements can be regulated by different means. DNA CpG methylation is known to decrease or inhibit transpositional activity of diverse transposons. However, very surprisingly, it was previously shown that CpG methylation of the Sleeping Beauty (SB) transposon significantly enhanced transposition in mouse embryonic stem cells. RESULTS: In order to investigate the unexpected response of SB transposition to CpG methylation, related transposons from the Tc1/mariner superfamily, that is, Tc1, Himar1, Hsmar1, Frog Prince (FP) and Minos were tested to see how transposition was affected by CpG methylation. A significant increase of >20-fold in transposition of SB, FP and Minos was seen, whereas Tc1, Himar1 and Hsmar1 showed no difference in transposition upon CpG-methylation. The terminal inverted repeats (TIRs) of the SB, FP and Minos elements share a common structure, in which each TIR contains two functionally important binding sites for the transposase (termed the IR/DR structure). The group of IR/DR elements showed increased excision after CpG methylation compared to untreated transposon donor plasmids. We found that de novo CpG methylation is not required for transposition. A mutated FP donor plasmid with depleted CpG sites in both TIRs was as efficient in transposition as the wild-type transposon, indicating that CpG sites inside the TIRs are not responsible for altered binding of the factors potentially modulating transposition. By using an in vivo one-hybrid DNA-binding assay in cultured human cells we found that CpG methylation had no appreciable effect on the affinity of SB transposase to its binding sites. However, chromatin immunoprecipitation indicated that CpG-methylated transposon donor plasmids are associated with a condensed chromatin structure characterized by trimethylated histone H3K9. Finally, DNA compaction by protamine was found to enhance SB transposition. CONCLUSIONS: We have shown that DNA CpG methylation upregulates transposition of IR/DR elements in the Tc1/mariner superfamily. CpG methylation provokes the formation of a tight chromatin structure at the transposon DNA, likely aiding the formation of a catalytically active complex by facilitating synapsis of sites bound by the transposase

    Hsmar1 transposition is sensitive to the topology of the transposon donor and the target

    Get PDF
    Hsmar1 is a member of the Tc1-mariner superfamily of DNA transposons. These elements mobilize within the genome of their host by a cut-and-paste mechanism. We have exploited the in vitro reaction provided by Hsmar1 to investigate the effect of DNA supercoiling on transposon integration. We found that the topology of both the transposon and the target affect integration. Relaxed transposons have an integration defect that can be partially restored in the presence of elevated levels of negatively supercoiled target DNA. Negatively supercoiled DNA is a better target than nicked or positively supercoiled DNA, suggesting that underwinding of the DNA helix promotes target interactions. Like other Tc1-mariner elements, Hsmar1 integrates into 5′-TA dinucleotides. The direct vicinity of the target TA provides little sequence specificity for target interactions. However, transposition within a plasmid substrate was not random and some TA dinucleotides were targeted preferentially. The distribution of intramolecular target sites was not affected by DNA topology

    Retargeting transposon insertions by the adeno-associated virus Rep protein

    Get PDF
    The Sleeping Beauty (SB), piggyBac (PB) and Tol2 transposons are promising instruments for genome engineering. Integration site profiling of SB, PB and Tol2 in human cells showed that PB and Tol2 insertions were enriched in genes, whereas SB insertions were randomly distributed. We aimed to introduce a bias into the target site selection properties of the transposon systems by taking advantage of the locus-specific integration system of adeno-associated virus (AAV). The AAV Rep protein binds to Rep recognition sequences (RRSs) in the human genome, and mediates viral integration into nearby sites. A series of fusion constructs consisting of the N-terminal DNA-binding domain of Rep and the transposases or the N57 domain of SB were generated. A plasmid-based transposition assay showed that Rep/SB yielded a 15-fold enrichment of transposition at a particular site near a targeted RRS. Genome-wide insertion site analysis indicated that an approach based on interactions between the SB transposase and Rep/N57 enriched transgene insertions at RRSs. We also provide evidence of biased insertion of the PB and Tol2 transposons. This study provides a comparative insight into target site selection properties of transposons, as well as proof-of-principle for targeted chromosomal transposition by composite protein-protein and protein-DNA interactions

    Far-Ultraviolet Surveys of Globular Clusters: Hunting for the Products of Stellar Collisions and Near Misses

    Full text link
    Globular clusters are gravitationally bound stellar systems containing on the order of 100,000 stars. Due to the high stellar densities in the cores of these clusters, close encounters and even physical collisions between stars are inevitable. These dynamical interactions can produce exotic types of single and binary stars that are extremely rare in the galactic field, but which may be important to the dynamical evolution of their host clusters. A common feature of these dynamically-formed stellar populations is that many of their members are relatively hot, and thus bright in the far-ultraviolet (FUV) waveband. In this short review, I describe how space-based FUV observations are being used to find and study these populations.Comment: 15 pages, 6 figures; invited "Brief Review" for Modern Physics Letters

    Spatiotemporal analysis of SARS-CoV-2 infection reveals an expansive wave of monocyte-derived macrophages associated with vascular damage and virus clearance in hamster lungs

    Get PDF
    We present the first study of the 3D kinetics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the early host response in a large lung volume using a combination of tissue imaging and transcriptomics. This approach allowed us to make a number of important findings:Spatially restricted antiviral response is shown, including the formation of monocytic macrophage clusters and upregulation of the major histocompatibility complex II in infected epithelial cells.The monocyte-derived macrophages are linked to SARS-CoV-2 clearance, and the appearance of these cells is associated with post-infection endothelial damage; thus, we shed light on the role of these cells in infected tissue.An early onset of tissue repair occurring simultaneously with inflammatory and necrotizing processes provides the basis for longer-term alterations in the lungs

    A single amino acid switch converts the sleeping beauty transposase into an efficient unidirectional excisionase with utility in stem cell reprogramming

    Get PDF
    The Sleeping Beauty (SB) transposon is an advanced tool for genetic engineering and a useful model to investigate cut-and-paste DNA transposition in vertebrate cells. Here, we identify novel SB transposase mutants that display efficient and canonical excision but practically unmeasurable genomic re-integration. Based on phylogenetic analyses, we establish compensating amino acid replacements that fully rescue the integration defect of these mutants, suggesting epistasis between these amino acid residues. We further show that the transposons excised by the exc(+)/int(-) transposase mutants form extrachromosomal circles that cannot undergo a further round of transposition, thereby representing dead-end products of the excision reaction. Finally, we demonstrate the utility of the exc(+)/int(-) transposase in cassette removal for the generation of reprogramming factor-free induced pluripotent stem cells. Lack of genomic integration and formation of transposon circles following excision is reminiscent of signal sequence removal during V(D)J recombination, and implies that cut-and-paste DNA transposition can be converted to a unidirectional process by a single amino acid change
    corecore