146 research outputs found

    Behaviour of Cosmic Ray Daily Variation and Solar Activity on Anomalous Days

    Get PDF

    Dispersion Characteristics of non-Newtonian fluid during transportation of nanoparticles in permeable capillary

    Get PDF
    The present analysis deals with the dispersion characteristics of blood described as Herschel- Bulkley fluid in capillary with permeable walls for fluid and impermeable for the nanoparticles. The contribution of molecular and convective diffusion is recalled from the Taylor and Aris coefficient of diffusion. The effective longitudinal diffusion depends on three parameters namely rheological parameter, pressure parameter, and the permeability parameter. We investigate the influence of the longitudinal transport of nanoparticles with permeable blood vessels on the effective dispersion. It shows that the effective diffusion of nanoparticles reduces with increase in radius of the plug region (i.e., the volume of red blood cells) and the permeability of the blood vessels

    Study of Transport of Nanoparticles with Power Law fluid Model for Blood Rheology in Capillaries

    Get PDF
    The present paper deals with a mathematical model for blood flow through an axially symmetric blood capillary with peripheral layer and slip at the wall. The longitudinal transport of nanoparticles in blood vessels has been analyzed with blood as a power law fluid in a central core region of suspension of all the erythrocytes and a Newtonian fluid in a peripheral layer of plasma. In present analysis, the capillary walls are impermeable and not absorbent for the nanoparticles. The expressions for velocity profile, flow rate, mean velocity and concentration of the solute have been obtained and results have been discussed through graphs

    Effect of Glycocalyx on Red Blood Cell Motion in Capillary Surrounded by Tissue

    Get PDF
    The aim of the paper is to develop a simple model for capillary tissue fluid exchange system to study the effect of glycocalyx layer on the single file flow of red cells. We have considered the channel version of an idealized Krogh capillary-tissue exchange system. The glycocalyx and the tissue are represented as porous layers with different property parametric values. Hydrodynamic Lubrication theory is used to compute the squeezing flow of plasma within the small gap between the cell and the glycocalyx layer symmetrically surrounded by the tissue. The system of non linear partial differential equations has been solved using analytical techniques. The model predicts that decrease in glycocalyx thickness reduces the axial velocity of plasma and the resistance to flow increases in presence of glycocalyx

    Artificial Light at Night: A Global Threat to Plant Biological Rhythms and Eco-Physiological Processes

    Get PDF
    Light is crucial environmental factor for primary resource and signalling in plants and provide optimum fitness under fluctuating environments from millions of year. However, due to urbanization, and human development activities lot of excess light generated in environment during night time and responsible for anthropogenic generated pollution (ALAN; artificial night light pollution). This pollution has cause for serious problem in plants as it affects their processes and functions which are under the control of light or diurnal cycle. Plant biorhythms mostly diurnal rhythms such as stomatal movements, photosynthetic activity, and many more metabolic processes are under the control of period of light and dark, which are crucially affected by artificial light at night. Similarly, the crucial plant processes such as pollination, flowering, and yield determining processes are controlled by the diurnal cycle and ALAN affects these processes and ultimately hampers the plant fitness and development. To keep in mind the effect of artificial light at night on plant biorhythm and eco-physiological processes, this chapter will focus on the status of global artificial night light pollution and the responsible factors. Further, we will explore the details mechanisms of plant biorhythm and eco-physiological processes under artificial light at night and how this mechanism can be a global threat. Then at the end we will focus on the ANLP reducing strategies such as new light policy, advanced lightening technology such as remote sensing and lightening utilisation optimisation

    Challenges and opportunities in mixed method data collection on mental health issues of health care workers during COVID-19 pandemic in India

    Get PDF
    Background: The present paper describes the key challenges and opportunities of mixed method telephonic data collection for mental health research using field notes and the experiences of the investigators in a multicenter study in ten sites of India. The study was conducted in public and private hospitals to understand the mental health status, social stigma and coping strategies of different healthcare personnel during the COVID-19 pandemic in India.Methods: Qualitative and quantitative interviews were conducted telephonically. The experiences of data collection were noted as a field notes/diary by the data collectors and principal investigators.Results: The interviewers reported challenges such as network issues, lack of transfer of visual cues and sensitive content of data. Although the telephonic interviews present various challenges in mixed method data collection, it can be used as an alternative to face-to-face data collection using available technology.Conclusions: It is important that the investigators are well trained keeping these challenges in mind so that their capacity is built to deal with these challenges and good quality data is obtained

    Human protein reference database—2006 update

    Get PDF
    Human Protein Reference Database (HPRD) () was developed to serve as a comprehensive collection of protein features, post-translational modifications (PTMs) and protein–protein interactions. Since the original report, this database has increased to >20 000 proteins entries and has become the largest database for literature-derived protein–protein interactions (>30 000) and PTMs (>8000) for human proteins. We have also introduced several new features in HPRD including: (i) protein isoforms, (ii) enhanced search options, (iii) linking of pathway annotations and (iv) integration of a novel browser, GenProt Viewer (), developed by us that allows integration of genomic and proteomic information. With the continued support and active participation by the biomedical community, we expect HPRD to become a unique source of curated information for the human proteome and spur biomedical discoveries based on integration of genomic, transcriptomic and proteomic data

    Chromium removal from aqueous solution by a PEI-silica nanocomposite

    Get PDF
    It is essential and important to determine the adsorption mechanism as well as removal efficiency when using an adsorption technique to remove toxic heavy metals from wastewater. In this research, the removal efficiency and mechanism of chromium removal by a silica-based nanoparticle were investigated. A PEI-silica nanoparticle was synthesized by a one-pot technique and exhibited uniformly well-dispersed PEI polymers in silica particles. The adsorption capacity of chromium ions was determined by a batch adsorption test, with the PEI-silica nanoparticle having a value of 183.7 mg/g and monolayer sorption. Adsorption of chromium ions was affected by the solution pH and altered the nanoparticle surface chemically. First principles calculations of the adsorption energies for the relevant adsorption configurations and XPS peaks of Cr and N showed that Cr(VI), [HCrO4](-) is reduced to two species, Cr(III), CrOH2+ and Cr3+, by an amine group and that Cr(III) and Cr(VI) ions are adsorbed on different functional groups, oxidized N and NH3+
    corecore