26,723 research outputs found
R3MC: A Riemannian three-factor algorithm for low-rank matrix completion
We exploit the versatile framework of Riemannian optimization on quotient
manifolds to develop R3MC, a nonlinear conjugate-gradient method for low-rank
matrix completion. The underlying search space of fixed-rank matrices is
endowed with a novel Riemannian metric that is tailored to the least-squares
cost. Numerical comparisons suggest that R3MC robustly outperforms
state-of-the-art algorithms across different problem instances, especially
those that combine scarcely sampled and ill-conditioned data.Comment: Accepted for publication in the proceedings of the 53rd IEEE
Conference on Decision and Control, 201
- …