26,723 research outputs found

    R3MC: A Riemannian three-factor algorithm for low-rank matrix completion

    Full text link
    We exploit the versatile framework of Riemannian optimization on quotient manifolds to develop R3MC, a nonlinear conjugate-gradient method for low-rank matrix completion. The underlying search space of fixed-rank matrices is endowed with a novel Riemannian metric that is tailored to the least-squares cost. Numerical comparisons suggest that R3MC robustly outperforms state-of-the-art algorithms across different problem instances, especially those that combine scarcely sampled and ill-conditioned data.Comment: Accepted for publication in the proceedings of the 53rd IEEE Conference on Decision and Control, 201
    • …
    corecore