4 research outputs found

    Metal nanoparticle alters adenine induced charge transfer kinetics of vitamin K3 in magnetic field

    Get PDF
    In this article, we highlight the alterations in the photoinduced electron transfer (ET) and hydrogen atom transfer (HAT) pathways between an anti-tumor drug vitamin-K3 (MQ) and a nucleobase adenine (ADN) in the presence of gold (Au) and iron (Fe) nanoparticles (NPs). Inside the confined micellar media, with laser flash photolysis corroborated with an external magnetic field (MF), we have detected the transient geminate radicals of MQ and ADN, photo-generated through ET and HAT. We observe that the presence of AuNP on the MQ-ADN complex (^(Au)MQ-ADN) assists HAT by limiting the ET channel, on the other hand, FeNP on the MQ-ADN complex (^(Fe)MQ-ADN) mostly favors a facile PET. We hypothesize that through selective interactions of the ADN molecules with AuNP and MQ molecules with FeNP, a preferential HAT and PET process is eased. The enhanced HAT and PET have been confirmed by the escape yields of radical intermediates by time-resolved transient absorption spectroscopy in the presence of MF

    Redox Modifications of Carbon Dots Shape Their Optoelectronics

    Get PDF
    Carbon dots (CDs) are 1–10 nm scaled complex nanostructures with a wide range of applications and show unconventional photophysical behavior upon excitation. In this article, we have unveiled some of the underlying mechanisms and excited state dynamics of CDs by perturbing their interface with oxidizing and reducing agents. With no substantial alteration in size of surface-treated oxidized (^OCDs), reduced (^RCDs), and untreated CDs (^UCDs), we observe marked changes in their charge transport properties and diverse spectral signatures in singlet and triplet excited states. Fine tuning of the spectral behavior of nanomaterials is often treated as an outcome of quantum confinement of the excitons. Herein with different spectroscopic techniques along with conducting atomic force microscopy and triplet–triplet absorption, we elucidate that, not just confinement, the structural modification at the surface also dictates optoelectronic behavior by altering some properties such as energy band gap, quantum tunneling across the metal–CD–metal junction, and yield of triplet excitons

    Metal nanoparticle alters adenine induced charge transfer kinetics of vitamin K3 in magnetic field

    Get PDF
    In this article, we highlight the alterations in the photoinduced electron transfer (ET) and hydrogen atom transfer (HAT) pathways between an anti-tumor drug vitamin-K3 (MQ) and a nucleobase adenine (ADN) in the presence of gold (Au) and iron (Fe) nanoparticles (NPs). Inside the confined micellar media, with laser flash photolysis corroborated with an external magnetic field (MF), we have detected the transient geminate radicals of MQ and ADN, photo-generated through ET and HAT. We observe that the presence of AuNP on the MQ-ADN complex (^(Au)MQ-ADN) assists HAT by limiting the ET channel, on the other hand, FeNP on the MQ-ADN complex (^(Fe)MQ-ADN) mostly favors a facile PET. We hypothesize that through selective interactions of the ADN molecules with AuNP and MQ molecules with FeNP, a preferential HAT and PET process is eased. The enhanced HAT and PET have been confirmed by the escape yields of radical intermediates by time-resolved transient absorption spectroscopy in the presence of MF
    corecore