22,909 research outputs found

    Vacuum structure and effective potential at finite temperature: a variational approach

    Full text link
    We compute the effective potential for Ï•4\phi^4 theory with a squeezed coherent state type of construct for the ground state. The method essentially consists in optimising the basis at zero and finite temperatures. The gap equation becomes identical to resumming the infinite series of daisy and super daisy graphs while the effective potential includes multiloop effects and agrees with that obtained through composite operator formalism at finite temperature.Comment: 15 pages, Revtex, No figures, to appear in Jou. of Phys.G(Nucl. and Part. Phys.

    Chiral Symmetry Breaking and Pion Wave Function

    Full text link
    We consider here chiral symmetry breaking through nontrivial vacuum structure with quark antiquark condensates. We then relate the condensate function to the wave function of pion as a Goldstone mode. This simultaneously yields the pion also as a quark antiquark bound state as a localised zero mode in vacuum. We illustrate the above with Nambu Jona-Lasinio model to calculate different pionic properties in terms of the vacuum structure for breaking of exact or approximate chiral symmetry, as well as the condensate fluctuations giving rise to σ\sigma mesons.Comment: latex, revtex, 16 page

    D mesons and charmonium states in asymmetric nuclear matter at finite temperatures

    Full text link
    We investigate the in-medium masses of DD and Dˉ\bar{D} mesons in the isospin-asymmetric nuclear matter at finite temperatures arising due to the interactions with the nucleons, the scalar isoscalar meson σ\sigma, and the scalar iso-vector meson δ\delta within a SU(4) model. The in-medium masses of J/ψJ/\psi and the excited charmonium states (ψ(3686)\psi(3686) and ψ(3770)\psi(3770)) are also calculated in the hot isospin asymmetric nuclear matter in the present investigation. These mass modifications arise due to the interaction of the charmonium states with the gluon condensates of QCD, simulated by a scalar dilaton field introduced to incorporate the broken scale invariance of QCD within the effective chiral model. The change in the mass of J/ψJ/\psi in the nuclear matter with the density is seen to be rather small, as has been shown in the literature by using various approaches, whereas, the masses of the excited states of charmonium (ψ(3686)\psi(3686) and ψ(3770)\psi(3770)) are seen to have considerable drop at high densities. The present study of the in-medium masses of DD (Dˉ\bar{D}) mesons as well as of the charmonium states will be of relevance for the observables from the compressed baryonic matter, like the production and collective flow of the DD (Dˉ\bar D) mesons, resulting from the asymmetric heavy ion collision experiments planned at the future facility of the FAIR, GSI. The mass modifications of DD and Dˉ\bar{D} mesons as well as of the charmonium states in hot nuclear medium can modify the decay of the charmonium states (Ψ′,χc,J/Ψ\Psi^{'}, \chi_{c}, J/\Psi) to DDˉD\bar{D} pairs in the hot dense hadronic matter. The small attractive potentials observed for the Dˉ\bar{D} mesons may lead to formation of the Dˉ\bar{D} mesic nuclei.Comment: 61 pages, 19 figues, to be published in Phys. Rev.

    Intake ground vortex characteristics

    Get PDF
    The development of ground vortices when an intake operates in close proximity to the ground has been studied computationally for several configurations including front and rear quarter approaching flows as well as tailwind arrangements. The investigations have been conducted at model scale using a generic intake geometry. Reynolds Averaged Navier–Stokes calculations have been used and an initial validation of the computational model has been carried out against experimental data. The computational method has subsequently been applied to configurations that are difficult to test experimentally by including tailwind and rear quarter flows. The results, along with those from a previous compatible study of headwind and pure cross-wind configurations, have been used to assess the ground vortex behaviour under a broad range of velocity ratios and approaching wind angles. The characteristics provide insights on the influence of the size and strength of ground vortices on the overall quality of the flow ingested by the intake

    Anisotropic cosmological models with two fluids

    Full text link
    In this paper, aniostropic dark energy cosmological models have been constructed in a Bianchi-V space-time with the energy momentum tensor consisting of two non-interacting fluids namely bulk viscous fluid and dark energy fluid. Two different models are constructed based on the power law cosmology and de Sitter universe. The constructed model also embedded with different pressure gradients along different spatial directions. The variable equation of state (EoS) parameter, skewness parameters for both the models are obtained and analyzed. The physical properties of the models obtained with the use of scale factors of power law and de Sitter law are also presented.Comment: 10 pages, 12 figure
    • …
    corecore