51 research outputs found

    The 3d-to-4s-by-2p highway to superconductivity in cuprates

    Full text link
    High-temperature superconductors are nowadays found in great variety and hold technological promise. It is still an unsolved mystery that the critical temperature T_c of the basic cuprates is so high. The answer might well be hidden in a conventional corner of theoretical physics, overlooked in the recent hunt for exotic explanations of new effects in these materials. A forgotten intra-atomic s-d two-electron exchange in the Cu atom is found to provide a strong (~eV) electron pairing interaction. A Bardeen-Cooper-Schrieffer approach can explain the main experimental observations and predict the correct d_{x^2-y^2} symmetry of the gap.Comment: 4 pages, 3 figures, LaTeX2

    Tight-binding modelling of the electronic band structure of layered superconducting perovskites

    Full text link
    A detailed tight-binding analysis of the electron band structure of the CuO_2 plane of layered cuprates is performed within a sigma-band Hamiltonian including four orbitals - Cu3d_x^2-y^2, Cu4s, O2p_x, and O2p_y. Both the experimental and theoretical hints in favor of Fermi level located in a Cu or O band, respectively, are considered. For these two alternatives analytical expressions are obtained for the LCAO electron wave functions suitable for the treatment of electron superexchange. Simple formulae for the Fermi surface and electron dispersions are derived by applying the Loewdin down-fold procedure to set up the effective copper and oxygen Hamiltonians. They are used to fit the experimental ARUPS Fermi surface of Pb_0.42Bi_1.73Sr_1.94Ca_1.3Cu_1.92O_8+x and both the ARPES and LDA Fermi surface of Nd_2-xCe_xCuO_4-delta. The value of presenting the hopping amplitudes as surface integrals of ab initio atomic wave functions is demonstrated as well. The same approach is applied to the RuO_2 plane of the ruthenate Sr_2RuO_4. The LCAO Hamiltonians including the three in-plane pi-orbitals Ru4d_xy, O_a 2p_y, O_b 2p_x and the four transversal pi-orbitals Ru4d_zx, Ru4d_yz, O_a 2p_z, O_b 2p_z, are separately considered. It is shown that the equation for the constant energy curves and the Fermi contours has the same canonical form as the one for the layered cuprates.Comment: 21 pages, 10 figures, published in J. Phys.: Condens. Matter (complete and corrected References section

    Plasma Resonance in Layered Normal Metals and Superconductors

    Full text link
    A microscopic theory of the plasma resonance in layered metals is presented. It is shown that electron-impurity scattering can suppress the plasma resonance in the normal state and sharpen it in the superconducting state. Analytic properties of the conductivity for the electronic transport perpendicular to the layers are investigated. The dissipative part of the electromagnetic response in c-direction has been found to depend on frequency in a highly non-trivial manner. This sort of behavior cannot be incorporated in the widely used phenomenological Gorter-Kazimir model.Comment: 34 pages including 12 figures in uuencoded.file. A revised version. Several formulas and a number of misprints are corrected. A problem with printing of figures is fixe

    Thermodynamics of Two - Band Superconductors: The Case of MgB2_{2}

    Get PDF
    Thermodynamic properties of the multiband superconductor MgB2_{2} have often been described using a simple sum of the standard BCS expressions corresponding to σ\sigma- and π\pi-bands. Although, it is \textit{a priori} not clear if this approach is working always adequately, in particular in cases of strong interband scattering. Here we compare the often used approach of a sum of two independent bands using BCS-like α\alpha-model expressions for the specific heat, entropy and free energy to the solution of the full Eliashberg equations. The superconducting energy gaps, the free energy, the entropy and the heat capacity for varying interband scattering rates are calculated within the framework of two-band Eliashberg theory. We obtain good agreement between the phenomenological two-band α\alpha-model with the Eliashberg results, which delivers for the first time the theoretical verification to use the α\alpha-model as a useful tool for a reliable analysis of heat capacity data. For the thermodynamic potential and the entropy we demonstrate that only the sum over the contributions of the two bands has physical meaning.Comment: 27 pages, 10 figures, 1 table, submitted to Phys. Rev.
    • …
    corecore