108 research outputs found
Avalanche precursors of failure in hierarchical fuse networks
We study precursors of failure in hierarchical random fuse network models
which can be considered as idealizations of hierarchical (bio)materials where
fibrous assemblies are held together by multi-level (hierarchical) cross-links.
When such structures are loaded towards failure, the patterns of precursory
avalanche activity exhibit generic scale invariance: Irrespective of load,
precursor activity is characterized by power-law avalanche size distributions
without apparent cut-off, with power-law exponents that decrease continuously
with increasing load. This failure behavior and the ensuing super-rough crack
morphology differ significantly from the findings in non-hierarchical
structures
Failure Processes in Elastic Fiber Bundles
The fiber bundle model describes a collection of elastic fibers under load.
the fibers fail successively and for each failure, the load distribution among
the surviving fibers change. Even though very simple, the model captures the
essentials of failure processes in a large number of materials and settings. We
present here a review of fiber bundle model with different load redistribution
mechanism from the point of view of statistics and statistical physics rather
than materials science, with a focus on concepts such as criticality,
universality and fluctuations. We discuss the fiber bundle model as a tool for
understanding phenomena such as creep, and fatigue, how it is used to describe
the behavior of fiber reinforced composites as well as modelling e.g. network
failure, traffic jams and earthquake dynamics.Comment: This article has been Editorially approved for publication in Reviews
of Modern Physic
Theoretical prediction of CNT-CF/PP composite tensile properties using various numerical modeling methods
Development of effective models to predict tensile properties of ‘carbon nanotube coated carbon fibre reinforced polypropylene (CNT-CF/PP)’ composites is briefly discussed. The composite taken as the reference is based on the highest growth mechanism of CNTs over carbon fibres. Halpin-Tsai and Combined Voigt-Reuss model has been implemented. Young's modulus for CNT-CF/PP composites has been found 4.5368 GPa and the tensile strength has been estimated 45.367 MPa considering the optimum operating condition of chemical vapor deposition (CVD) technique. Stiffness of the composite is represented through the stress-strain plots; stiffness is proportional to the steepness of the slope. There are slight deviations of results that have been found theoretically over the experimental issues
Fibre Distribution and the Process-Property Dilemma
The options for the fibre reinforcement of polymer matrix composites cover a range from short-fibre chopped strand mat, through woven fabric to unidirectional pre-impregnated (prepreg) reinforcements. The modelling of such materials may be simplified by assumptions such as perfect regular packing of fibres and the total absence of fibre waviness. However, these and other features such as the crimp or waviness in woven fabrics make real materials more complex than the simplified models. Clustering of fibres creates fibre-rich and resin-rich volumes (FRV and RRV respectively) in the composites. Prior to impregnation, large RRV will be pore-space that can expedite the flow of resin in liquid composite moulding processes (especially resin transfer moulding (RTM) and resin infusion under flexible tooling (RIFT). In the composite, the clustering of fibres tends to reduce the mechanical properties. The use of image processing and analysis can permit micro-/meso-structural characterisation which may correlate to the respective properties. This chapter considers the quantification of microstructure images in the context of the process-property dilemma for woven carbon-fibre reinforced composites with the aim of increasing understanding of the balance between processability and mechanical performance
Methods of the Theory of Complex Systems in Modeling of Fracture: a Brief Review
Theoretical investigations of damage and fracture of materials which are based on the concepts of the theory of complex systems are reviewed and analyzed. The models of fracture, which have been developed with the use of the methods of following theories, are considered: theory of phase transitions and statistical physics, percolation and fractals theories, theories of dynamical systems, bifurcations and self-organization. The main achievements, perspectives and limitations of the application of these methods in modelling of fracture are analyzed
- …