131 research outputs found

    Melanogenic Regulatory Factors in Coated Vesicles from Melanoma Cells

    Get PDF
    Coated vesicles have been found to contain much higher tyrosinase and γ-glutamyl transpeptidase activities than pre-melanosomes. This indicates that similar to tyrosinase, γ-glutamyl transpeptidase, an enzyme responsible for pheomelanogenesis, is highly concentrated in coated vesicles after its maturation in Golgi associated endoplasmic reticulum (GERL). Furthermore, in the pre- and post-dopaquinone melanogenic pathway, coated vesicles convert dopachrome to colorless indole compounds mere quickly than in premelanosomes because of their higher dopachrome conversion factor activity. Melanosomes have been found to exhibit indole conversion factor activity, while coated vesicles show indole blocking factor activity. In moderately tyrosinase-rich premelanosomes, the levels of dopachrome conversion factor and indole blocking factor are lower than in coated vesicles or melanosomes. High levels of indole blocking factor in coated vesicles may indicate why melanin polymer formation does not occur there in vivo despite their high tyrosinase activity

    Unique structure of ozoralizumab, a trivalent anti-TNFα NANOBODY® compound, offers the potential advantage of mitigating the risk of immune complex-induced inflammation

    Get PDF
    Biologics have become an important component of treatment strategies for a variety of diseases, but the immunogenicity of large immune complexes (ICs) and aggregates of biologics may increase risk of adverse events is a concern for biologics and it remains unclear whether large ICs consisting of intrinsic antigen and therapeutic antibodies are actually involved in acute local inflammation such as injection site reaction (ISR). Ozoralizumab is a trivalent, bispecific NANOBODY® compound that differs structurally from IgGs. Treatment with ozoralizumab has been shown to provide beneficial effects in the treatment of rheumatoid arthritis (RA) comparable to those obtained with other TNFα inhibitors. Very few ISRs (2%) have been reported after ozoralizumab administration, and the drug has been shown to have acceptable safety and tolerability. In this study, in order to elucidate the mechanism underlying the reduced incidence of ISRs associated with ozoralizumab administration, we investigated the stoichiometry of two TNFα inhibitors (ozoralizumab and adalimumab, an anti-TNFα IgG) ICs and the induction by these drugs of Fcγ receptor (FcγR)-mediated immune responses on neutrophils. Ozoralizumab-TNFα ICs are smaller than adalimumab-TNFα ICs and lack an Fc portion, thus mitigating FcγR-mediated immune responses on neutrophils. We also developed a model of anti-TNFα antibody-TNFα IC-induced subcutaneous inflammation and found that ozoralizumab-TNFα ICs do not induce any significant inflammation at injection sites. The results of our studies suggest that ozoralizumab is a promising candidate for the treatment of RA that entails a lower risk of the IC-mediated immune cell activation that leads to unwanted immune responses

    A clinically applicable and scalable method to regenerate T-cells from iPSCs for off-the-shelf T-cell immunotherapy

    Get PDF
    動物由来の成分を含まないより安全な製法でiPS細胞から大量の再生T細胞を培養する方法の開発 --T細胞を使ったがん免疫療法での利用も--. 京都大学プレスリリース. 2021-01-18.Clinical successes demonstrated by chimeric antigen receptor T-cell immunotherapy have facilitated further development of T-cell immunotherapy against wide variety of diseases. One approach is the development of “off-the-shelf” T-cell sources. Technologies to generate T-cells from pluripotent stem cells (PSCs) may offer platforms to produce “off-the-shelf” and synthetic allogeneic T-cells. However, low differentiation efficiency and poor scalability of current methods may compromise their utilities. Here we show improved differentiation efficiency of T-cells from induced PSCs (iPSCs) derived from an antigen-specific cytotoxic T-cell clone, or from T-cell receptor (TCR)-transduced iPSCs, as starting materials. We additionally describe feeder-free differentiation culture systems that span from iPSC maintenance to T-cell proliferation phases, enabling large-scale regenerated T-cell production. Moreover, simultaneous addition of SDF1α and a p38 inhibitor during T-cell differentiation enhances T-cell commitment. The regenerated T-cells show TCR-dependent functions in vitro and are capable of in vivo anti-tumor activity. This system provides a platform to generate a large number of regenerated T-cells for clinical application and investigate human T-cell differentiation and biology
    corecore