125 research outputs found

    A Field Effect Transitor based on the Mott Transition in a Molecular Layer

    Full text link
    Here we propose and analyze the behavior of a FET--like switching device, the Mott transition field effect transistor, operating on a novel principle, the Mott metal--insulator transition. The device has FET-like characteristics with a low ``ON'' impedance and high ``OFF'' impedance. Function of the device is feasible down to nanoscale dimensions. Implementation with a class of organic charge transfer complexes is proposed.Comment: Revtex 11pages, Figures available upon reques

    Theory of the Eigler-swith

    Full text link
    We suggest a simple model to describe the reversible field-induced transfer of a single Xe-atom in a scanning tunneling microscope, --- the Eigler-switch. The inelasticly tunneling electrons give rise to fluctuating forces on and damping of the Xe-atom resulting in an effective current dependent temperature. The rate of transfer is controlled by the well-known Arrhenius law with this effective temperature. The directionality of atom transfer is discussed, and the importance of use of non-equlibrium-formalism for the electronic environment is emphasized. The theory constitutes a formal derivation and generalization of the so-called Desorption Induced by Multiple Electron Transitions (DIMET) point of view.Comment: 13 pages (including 2 figures in separate LaTeX-files with ps-\specials), REVTEX 3.

    Electron-phonon effects and transport in carbon nanotubes

    Full text link
    We calculate the electron-phonon scattering and binding in semiconducting carbon nanotubes, within a tight binding model. The mobility is derived using a multi-band Boltzmann treatment. At high fields, the dominant scattering is inter-band scattering by LO phonons corresponding to the corners K of the graphene Brillouin zone. The drift velocity saturates at approximately half the graphene Fermi velocity. The calculated mobility as a function of temperature, electric field, and nanotube chirality are well reproduced by a simple interpolation formula. Polaronic binding give a band-gap renormalization of ~70 meV, an order of magnitude larger than expected. Coherence lengths can be quite long but are strongly energy dependent.Comment: 5 pages and 4 figure

    Intersubband decay of 1-D exciton resonances in carbon nanotubes

    Full text link
    We have studied intersubband decay of E22 excitons in semiconducting carbon nanotubes experimentally and theoretically. Photoluminescence excitation line widths of semiconducting nanotubes with chiral indicess (n, m) can be mapped onto a connectivity grid with curves of constant (n-m) and (2n+m). Moreover, the global behavior of E22 linewidths is best characterized by a strong increase with energy irrespective of their (n-m) mod(3)= \pm 1 family affiliation. Solution of the Bethe-Salpeter equations shows that the E22 linewidths are dominated by phonon assisted coupling to higher momentum states of the E11 and E12 exciton bands. The calculations also suggest that the branching ratio for decay into exciton bands vs free carrier bands, respectively is about 10:1.Comment: 4 pages, 4 figure

    Electrically Driven Light Emission from Individual CdSe Nanowires

    Full text link
    We report electroluminescence (EL) measurements carried out on three-terminal devices incorporating individual n-type CdSe nanowires. Simultaneous optical and electrical measurements reveal that EL occurs near the contact between the nanowire and a positively biased electrode or drain. The surface potential profile, obtained by using Kelvin probe microscopy, shows an abrupt potential drop near the position of the EL spot, while the band profile obtained from scanning photocurrent microscopy indicates the existence of an n-type Schottky barrier at the interface. These observations indicate that light emission occurs through a hole leakage or an inelastic scattering induced by the rapid potential drop at the nanowire-electrode interface.Comment: 12 pages, 4 figure

    Tunable few-electron double quantum dots and Klein tunnelling in ultra-clean carbon nanotubes

    Full text link
    Quantum dots defined in carbon nanotubes are a platform for both basic scientific studies and research into new device applications. In particular, they have unique properties that make them attractive for studying the coherent properties of single electron spins. To perform such experiments it is necessary to confine a single electron in a quantum dot with highly tunable barriers, but disorder has until now prevented tunable nanotube-based quantum-dot devices from reaching the single-electron regime. Here, we use local gate voltages applied to an ultra-clean suspended nanotube to confine a single electron in both a single quantum dot and, for the first time, in a tunable double quantum dot. This tunability is limited by a novel type of tunnelling that is analogous to that in the Klein paradox of relativistic quantum mechanics.Comment: 21 pages including supplementary informatio

    Extraordinary carrier multiplication gated by a picosecond electric field pulse

    Get PDF
    The study of carrier multiplication has become an essential part of many-body physics and materials science as this multiplication directly affects nonlinear transport phenomena, and has a key role in designing efficient solar cells and electroluminescent emitters and highly sensitive photon detectors. Here we show that a 1-MVcm−1 electric field of a terahertz pulse, unlike a DC bias, can generate a substantial number of electron–hole pairs, forming excitons that emit near-infrared luminescence. The bright luminescence associated with carrier multiplication suggests that carriers coherently driven by a strong electric field can efficiently gain enough kinetic energy to induce a series of impact ionizations that can increase the number of carriers by about three orders of magnitude on the picosecond time scale

    Architectures for Multinode Superconducting Quantum Computers

    Full text link
    Many proposals to scale quantum technology rely on modular or distributed designs where individual quantum processors, called nodes, are linked together to form one large multinode quantum computer (MNQC). One scalable method to construct an MNQC is using superconducting quantum systems with optical interconnects. However, a limiting factor of these machines will be internode gates, which may be two to three orders of magnitude noisier and slower than local operations. Surmounting the limitations of internode gates will require a range of techniques, including improvements in entanglement generation, the use of entanglement distillation, and optimized software and compilers, and it remains unclear how improvements to these components interact to affect overall system performance, what performance from each is required, or even how to quantify the performance of each. In this paper, we employ a `co-design' inspired approach to quantify overall MNQC performance in terms of hardware models of internode links, entanglement distillation, and local architecture. In the case of superconducting MNQCs with microwave-to-optical links, we uncover a tradeoff between entanglement generation and distillation that threatens to degrade performance. We show how to navigate this tradeoff, lay out how compilers should optimize between local and internode gates, and discuss when noisy quantum links have an advantage over purely classical links. Using these results, we introduce a roadmap for the realization of early MNQCs which illustrates potential improvements to the hardware and software of MNQCs and outlines criteria for evaluating the landscape, from progress in entanglement generation and quantum memory to dedicated algorithms such as distributed quantum phase estimation. While we focus on superconducting devices with optical interconnects, our approach is general across MNQC implementations.Comment: 23 pages, white pape

    Strategies for Controlled Placement of Nanoscale Building Blocks

    Get PDF
    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others
    corecore