20 research outputs found
Cell-Cycle Modulation of Transcription Termination Factor Sen1
Many non-coding transcripts (ncRNA) generated by RNA polymerase II in S. cerevisiae are terminated by the Nrd1-Nab3-Sen1 complex. However, Sen1 helicase levels are surprisingly low compared with Nrd1 and Nab3, raising questions regarding how ncRNA can be terminated in an efficient and timely manner. We show that Sen1 levels increase during the S and G2 phases of the cell cycle, leading to increased termination activity of NNS. Overexpression of Sen1 or failure to modulate its abundance by ubiquitin-proteasome-mediated degradation greatly decreases cell fitness. Sen1 toxicity is suppressed by mutations in other termination factors, and NET-seq analysis shows that its overexpression leads to a decrease in ncRNA production and altered mRNA termination. We conclude that Sen1 levels are carefully regulated to prevent aberrant termination. We suggest that ncRNA levels and coding gene transcription termination are modulated by Sen1 to fulfill critical cell cycle-specific functions
Nuclear fate of yeast snoRNA is determined by co-transcriptional Rnt1 cleavage
Small nucleolar RNA (snoRNA) are conserved and essential non-coding RNA that are transcribed by RNA Polymerase II (Pol II). Two snoRNA classes, formerly distinguished by their structure and ribonucleoprotein composition, act as guide RNA to target RNA such as ribosomal RNA, and thereby introduce specific modifications. We have studied the 5'end processing of individually transcribed snoRNA in S. cerevisiae to define their role in snoRNA biogenesis and functionality. Here we show that pre-snoRNA processing by the endonuclease Rnt1 occurs co-transcriptionally with removal of the m7G cap facilitating the formation of box C/D snoRNA. Failure of this process causes aberrant 3'end processing and mislocalization of snoRNA to the cytoplasm. Consequently, Rnt1-dependent 5'end processing of box C/D snoRNA is critical for snoRNA-dependent methylation of ribosomal RNA. Our results reveal that the 5'end processing of box C/D snoRNA defines their distinct pathway of maturation
Kcl Test:an open-source inspired asymptomatic SARS-CoV-2 surveillance programme in an academic institution
Rapid and accessible testing was paramount in the management of the COVID-19 pandemic. Our university established KCL TEST: a SARS-CoV-2 asymptomatic testing programme that enabled sensitive and accessible PCR testing of SARS-CoV-2 RNA in saliva. Here, we describe our learnings and provide our blueprint for launching diagnostic laboratories, particularly in low-resource settings. Between December 2020 and July 2022, we performed 158277 PCRs for our staff, students, and their household contacts, free of charge. Our average turnaround time was 16 h and 37 min from user registration to result delivery. KCL TEST combined open-source automation and in-house non-commercial reagents, which allows for rapid implementation and repurposing. Importantly, our data parallel those of the UK Office for National Statistics, though we detected a lower positive rate and virtually no delta wave. Our observations strongly support regular asymptomatic community testing as an important measure for decreasing outbreaks and providing safe working spaces. Universities can therefore provide agile, resilient, and accurate testing that reflects the infection rate and trend of the general population. Our findings call for the early integration of academic institutions in pandemic preparedness, with capabilities to rapidly deploy highly skilled staff, as well as develop, test, and accommodate efficient low-cost pipelines.</p
Fateful Decisions of Where to Cut the Line:Pathology Associated with Aberrant 3' End Processing and Transcription Termination
Aberrant gene expression lies at the heart of many pathologies. This review will point out how 3' end processing, the final mRNA-maturation step in the transcription cycle, is surprisingly prone to regulated as well as stochastic variations with a wide range of consequences. Whereas smaller variations contribute to the plasticity of gene expression, larger alternations to 3' end processing and coupled transcription termination can lead to pathological consequences. These can be caused by the local mutation of one gene or affect larger numbers of genes systematically, if aspects of the mechanisms of 3' end processing and transcription termination are altered.</p
The Herpesvirus saimiri Small Nuclear RNAs Recruit AU-Rich Element-Binding Proteins but Do Not Alter Host AU-Rich Element-Containing mRNA Levels in Virally Transformed T Cells
Herpesvirus saimiri (HVS) encodes seven Sm-class small nuclear RNAs, called HSURs (for Herpesvirus saimiri U RNAs), that are abundantly expressed in HVS-transformed, latently infected marmoset T cells but are of unknown function. HSURs 1, 2, and 5 have highly conserved 5′-end sequences containing the AUUUA pentamer characteristic of AU-rich elements (AREs) that regulate the stability of many host mRNAs, including those encoding most proto-oncogenes and cytokines. To test whether the ARE-containing HSURs act to sequester host proteins that regulate the decay of these mRNAs, we demonstrate their in vivo interaction with the ARE-binding proteins hnRNP D and HuR in HVS-transformed T cells using a new cross-linking assay. Comprehensive Northern and microarray analyses revealed, however, that the levels of endogenous ARE-containing mRNAs are not altered in T cells latently infected with HVS mutants lacking HSURs 1 and 2. HSUR 1 binds the destabilizing ARE-binding protein tristetraprolin induced following activation of HVS-transformed T cells, but even in such stimulated cells, the levels of host ARE-containing mRNAs are not altered by deletion of HSURs 1 and 2. Instead, HSUR 1 itself is degraded by an ARE-dependent pathway in HVS-transformed T cells, suggesting that HVS may take advantage of the host ARE-mediated mRNA decay pathway to regulate HSUR expression. This is the first example of posttranscriptional regulation of the expression of an Sm small nuclear RNA
Yeast Sen1 Helicase Protects the Genome from Transcription-Associated Instability
Sen1 of S. cerevisiae is a known component of the NRD complex implicated in transcription termination of nonpolyadenylated as well as some polyadenylated RNA polymerase II transcripts. We now show that Sen1 helicase possesses a wider function by restricting the occurrence of RNA:DNA hybrids that may naturally form during transcription, when nascent RNA hybridizes to DNA prior to its packaging into RNA protein complexes. These hybrids displace the nontranscribed strand and create R loop structures. Loss of Sen1 results in transient R loop accumulation and so elicits transcription-associated recombination. SEN1 genetically interacts with DNA repair genes, suggesting that R loop resolution requires proteins involved in homologous recombination. Based on these findings, we propose that R loop formation is a frequent event during transcription and a key function of Sen1 is to prevent their accumulation and associated genome instability
Small nuclear RNAs encoded by Herpesvirus saimiri upregulate the expression of genes linked to T cell activation in virally transformed T cells
SummarySeven small nuclear RNAs of the Sm class are encoded by Herpesvirus saimiri (HVS), a γ Herpesvirus that causes aggressive T cell leukemias and lymphomas in New World primates and efficiently transforms T cells in vitro [1–4]. The Herpesvirus saimiri U RNAs (HSURs) are the most abundant viral transcripts in HVS-transformed, latently infected T cells but are not required for viral replication or transformation in vitro [5]. We have compared marmoset T cells transformed with wild-type or a mutant HVS lacking the most highly conserved HSURs, HSURs 1 and 2. Microarray and Northern analyses reveal that HSUR 1 and 2 expression correlates with significant increases in a small number of host mRNAs, including the T cell-receptor β and γ chains, the T cell and natural killer (NK) cell-surface receptors CD52 and DAP10, and intracellular proteins—SKAP55, granulysin, and NKG7—linked to T cell and NK cell activation. Upregulation of three of these transcripts was rescued after transduction of deletion-mutant-HVS-transformed cells with a lentiviral vector carrying HSURs 1 and 2. These changes indicate an unexpected role for the HSURs in regulating a remarkably defined and physiologically relevant set of host targets involved in the activation of virally transformed T cells during latency