51 research outputs found

    Differential genome-wide gene expression profiling of bovine largest and second-largest follicles: identification of genes associated with growth of dominant follicles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bovine follicular development is regulated by numerous molecular mechanisms and biological pathways. In this study, we tried to identify differentially expressed genes between largest (F1) and second-largest follicles (F2), and classify them by global gene expression profiling using a combination of microarray and quantitative real-time PCR (QPCR) analysis. The follicular status of F1 and F2 were further evaluated in terms of healthy and atretic conditions by investigating mRNA localization of identified genes.</p> <p>Methods</p> <p>Global gene expression profiles of F1 (10.7 +/- 0.7 mm) and F2 (7.8 +/- 0.2 mm) were analyzed by hierarchical cluster analysis and expression profiles of 16 representative genes were confirmed by QPCR analysis. In addition, localization of six identified transcripts was investigated in healthy and atretic follicles using in situ hybridization. The healthy or atretic condition of examined follicles was classified by progesterone and estradiol concentrations in follicular fluid.</p> <p>Results</p> <p>Hierarchical cluster analysis of microarray data classified the follicles into two clusters. Cluster A was composed of only F2 and was characterized by high expression of 31 genes including IGFBP5, whereas cluster B contained only F1 and predominantly expressed 45 genes including CYP19 and FSHR. QPCR analysis confirmed AMH, CYP19, FSHR, GPX3, PlGF, PLA2G1B, SCD and TRB2 were greater in F1 than F2, while CCL2, GADD45A, IGFBP5, PLAUR, SELP, SPP1, TIMP1 and TSP2 were greater in F2 than in F1. In situ hybridization showed that AMH and CYP19 were detected in granulosa cells (GC) of healthy as well as atretic follicles. PlGF was localized in GC and in the theca layer (TL) of healthy follicles. IGFBP5 was detected in both GC and TL of atretic follicles. GADD45A and TSP2 were localized in both GC and TL of atretic follicles, whereas healthy follicles expressed them only in GC.</p> <p>Conclusion</p> <p>We demonstrated that global gene expression profiling of F1 and F2 clearly reflected a difference in their follicular status. Expression of stage-specific genes in follicles may be closely associated with their growth or atresia. Several genes identified in this study will provide intriguing candidates for the determination of follicular growth.</p

    Cloning and expression of two new prolactin-related proteins, prolactin-related protein-VIII and -IX, in bovine placenta

    Get PDF
    BACKGROUND: Prolactin-related proteins (PRPs) are specific proteins of the growth hormone/prolactin (GH/PRL) family in bovine placenta. This study reports the identification and sequencing of a full-length cDNA for two new members of bovine PRPs, bPRP-VIII and -IX, and their localization and quantitative expression in bovine placenta. METHODS: New bPRP-VIII and -IX were identified from bovine placentome. Localization and quantitative gene expression in the placenta were respectively investigated by in situ hybridization and real-time RT-PCR methods. Recombinant proteins of these genes were produced by a mammalian HEK293 cell expression system. RESULTS: Full-length bPRP-VIII and -IX cDNA were respectively cloned with 909 and 910 nucleotide open-reading-frames corresponding to proteins of 236 and 238 amino acids. The predicted bPRP-VIII amino acid sequence shared about 40 to 70% homology with other bPRPs, and bPRP-IX had about 50 to 80 % homology of others. The two new bPRPs were detected only in the placenta by RT-PCR. mRNA was primarily expressed in the cotyledon and intercotyledonary tissues throughout gestation. An in situ hybridization analysis revealed the presence of bPRP-VIII and -IX mRNA in the trophoblastic binucleate and/or trinucleate cells. bPRP-VIII mRNA was observed in the extra-embryonic membrane on Day 27 of gestation, however, no bPRP-IX mRNA was observed in the extra-embryonic membrane in the same stage of pregnancy by quantitative real-time RT-PCR analysis. Both new bPRP genes were possible to translate a mature protein in a mammalian cell expression system with approximately 28 kDa in bPRP-VIII and 38 kDa in bPRP-IX. CONCLUSION: We identified the new members of bovine prolactin-related protein, bPRP-VIII and -IX. Localization and quantitative expression were confirmed in bovine placenta by in situ hybridization or real-time PCR. Their different temporal and spatial expressions suggest a different role for these genes in bovine placenta during gestation

    Expression and characterization of novel ovine orthologs of bovine placental prolactin-related proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prolactin-related proteins (PRPs) are non-classical placental-specific members of the prolactin/growth hormone family. Among ruminants, they are expressed in the cotyledonary villi of cattle and goat. We investigated placental PRP in sheep in order to gain a comprehensive understanding of the function and evolution of these molecules. We also examined the sequence properties, expression and lactogenic activation of the cloned genes.</p> <p>Results</p> <p>We cloned two novel ovine <it>PRPs</it>, named <it>oPRP1 </it>and <it>oPRP2</it>. <it>oPRP2 </it>had a typical <it>PRP </it>sequence similar to bovine <it>PRP1 </it>(<it>bPRP1</it>). <it>oPRP1 </it>had a short sequence identical with bovine or caprine type <it>PRP </it>but the reading frame was shifted. Both <it>oPRPs </it>were expressed in trophoblast giant binucleate cells (BNC) as in cattle and goat. <it>oPRP1 </it>expression declined from the early to the middle stage of gestation. In contrast, <it>oPRP2 </it>expression remained constant throughout the gestation period. <it>oPRP2 </it>was translated to form a mature protein in a mammalian cell expression system. Western blotting showed a molecular mass of 35 kDa for the FLAG-tag fusion <it>oPRP2</it> protein. This recombinant protein and <it>bPRP1</it> were bioassayed using Nb2 lymphoma cells; it was confirmed that neither ruminant <it>PRP</it> had lactogenic activity because the Nb2 lymphoma cells did not proliferate.</p> <p>Conclusion</p> <p>We have identified two novel <it>PRPs</it>, <it>oPRP1 </it>and <it>oPRP2</it>, in ovine placenta. Both these ovine <it>PRPs</it> were localized and quantitatively expressed in BNC. Absence of lactogenic activity was confirmed for the <it>oPRP2</it> molecule. It is anticipated that novel and known ruminant <it>PRPs</it> have common functions, except for lactogenic activity.</p

    Cloning and expression of SOLD1 in ovine and caprine placenta, and their expected roles during the development of placentomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Ly-6 (Ly-6/uPAR) superfamily members share the Ly-6 domain defined by distinct disulfide bonding patterns between 8 or 10 cysteine residues. They comprise membrane- and secretory-type proteins. We recently reported the gene and protein characterization of the bovine secreted protein of Ly-6 domain 1 (SOLD1). Bovine SOLD1 is expressed in trophoblast mononucleate cells (TMCs) and is localized in the cotyledonary mesenchyme. Here, we compared the expression and functionality of SOLD1 among the ruminants. We examined mRNA expression by chorionic fibroblasts as a measure of one of the SOLD1 functions.</p> <p>Results</p> <p>Ovine and caprine SOLD1 mRNAs have 303 bp open reading frames and encode for deduced SOLD1 proteins with 100 amino acids, including a 22-aa-long signal peptide at the N-terminal. Both of the SOLD1 amino acid sequences have high similarities with the bovine sequence. Both SOLD1 mRNAs were also expressed in TMCs of cotyledons and intercotyledonary membranes. The mature SOLD1 proteins were localized in the mesenchymal villi of cotyledons after secretion. Bovine, ovine and caprine SOLD1 affected gene expression in mesenchymal fibroblasts <it>in vitro</it>; nucleoredoxin expression was upregulated and BCL2-like 13 was downregulated. Thus, we suggest that SOLD1 acts as a modulator of cell proliferation and apoptosis.</p> <p>Conclusion</p> <p>Expressing cells and protein localization of SOLD1 coincided among the three ruminants. SOLD1 participated in regulating nucleoredoxin and BCL2-like 13 expression in chorionic fibroblasts. SOLD1 is produced specifically in the cotyledons and intercotyledonary membranes in ruminants and appears to be involved in the construction of the ruminant placenta.</p

    Quantitative analysis of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) gene expression in calf and adult bovine ovaries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been reported that calf oocytes are less developmentally competent than oocytes obtained from adult cows. Bone morphogenetic protein 15 (BMP15) and growth and differentiation factor 9 (GDF9) play critical roles in folliculogenesis, follicular development and ovulation in mammalian ovaries. In the present study, we attempted to compare the expression patterns of <it>BMP15 </it>and <it>GDF9 </it>in the cells of calf and cow ovaries to determine a relationship between the level of these genes and the low developmental competence of calf oocytes.</p> <p>Methods</p> <p>Bovine tissues were collected from 9-11 months-old calves and from 4-6 years-old cows. We characterized the gene expression of BMP15 and GDF9 in calf and adult bovine oocytes and cumulus cells using quantitative real-time reverse transcriptase polymerase chain reaction (QPCR) and <it>in situ </it>hybridization. Immunohistochemical analysis was also performed.</p> <p>Results</p> <p>The expression of <it>BMP15 </it>and <it>GDF9 </it>in cumulus cells of adult ovaries was significantly higher than that in calf ovaries, as revealed by QPCR. <it>GDF9 </it>expression in the oocytes of calf ovaries was significantly higher than in those of the adult ovaries. In contrast, <it>BMP15 </it>expression in the oocytes of calf and adult ovaries was not significantly different. The localization of gene expression and protein were ascertained by histochemistry.</p> <p>Conclusions</p> <p>Our result showed for the first time BMP15 and GDF9 expression in bovine cumulus cells. <it>BMP15 </it>and <it>GDF9 </it>mRNA expression in oocytes and cumulus cells was different in calves and cows.</p

    Characterization and Expression Analysis of SOLD1, a Novel Member of the Retrotransposon-Derived Ly-6 Superfamily, in Bovine Placental Villi

    Get PDF
    BACKGROUND:Ly-6 superfamily members have a conserved Ly-6 domain that is defined by a distinct disulfide bonding pattern between eight or ten cysteine residues. These members are divided into membrane-type and secretory-type proteins. In the present study, we report the identification of a novel Ly-6 domain protein, secreted protein of Ly-6 domain 1 (SOLD1), from bovine placenta. PRINCIPAL FINDINGS:SOLD1 mRNA was expressed in trophoblast mononucleate cells and the protein was secreted into and localized in the extracellular matrix of the mesenchyme in cotyledonary villi. SOLD1 bound mainly with type I collagen telopeptide. We confirmed secretion of SOLD1 from the basolateral surface of a bovine trophoblast cell line (BT-1). It may be related to the organization of the extra-cellular matrix in the mesenchyme of fetal villi. Since trophoblast mononucleate cells are epithelial cells, their polar organization is expected to have a crucial role in the SOLD1 secretion system. We established that SOLD1 is an intronless bovine gene containing the Alu retrotransposon, which was integrated via cytoplasmic reverse transcription. CONCLUSION:We identified a novel retrotransposon-like Ly-6 domain protein in bovine placenta. SOLD1 is a crucial secreted protein that is involved in the organization of the mesenchyme of the cotyledonary villi. Furthermore, the gene encoding SOLD1 has an interesting genomic structure

    Global gene expression analysis and regulation of the principal genes expressed in bovine placenta in relation to the transcription factor AP-2 family

    Get PDF
    BACKGROUND: Cell-cell communication is an important factor in feto-maternal units during placentogenesis. The placenta produces pivotal hormones and cytokines for communication between cotyledonary villi and the maternal caruncle. Gene expression in bovine placenta throughout pregnancy was comprehensively screened by a cDNA microarray, and we searched for a common transcription factor in a gene cluster that showed increasing expression throughout gestation in cotyledonary villi and caruncle. METHODS: Placentomal tissues (villi and caruncle) were collected from Day 25 to Day 250 of gestation for microarray analysis. Global gene expression profiles were analyzed using the k-means clustering method. A consensus sequence cis-element that may control up-regulated genes in a characteristic cluster was examined in silico. The quantitative expression and localization of a specific transcription factor were investigated in each tissue using quantitative real-time RT-PCR and in situ hybridization. RESULTS: The microarray expression profiles were classified into ten clusters. The genes with most markedly increased expression became concentrated in cluster 2 as gestation proceeded. Cluster 2 included placental lactogen (CSH1), pregnancy-associated glycoprotein-1 (PAG1), and sulfotransferase family 1E estrogen-preferring member 1 (SULT1E1), which were mainly detected in giant trophoblast binucleate cells (BNC). Consensus sequence analysis identified transcription factor AP-2 binding sites in some genes in this cluster. Quantitative real-time RT-PCR analysis confirmed that high level expression of transcription factor AP-2 alpha (TFAP2A) was common to cluster 2 genes during gestation. In contrast, the expression level of another AP-2 family gene, transcription factor AP-2 beta (TFAP2B), was extremely low over the same period. Another gene of the family, transcription factor AP-2 gamma (TFAP2C), was expressed at medium level compared with TFAP2A and TFAP2B. In situ hybridization showed that TFAP2A, TFAP2B and TFAP2C mRNAs were localized in trophoblast cells but were expressed by different cells. TFAP2A was expressed in cotyledonary epithelial cells including BNC, TFAP2B was specifically expressed in BNC, and TFAP2C in mononucleate cells. CONCLUSION: We detected gestational-stage-specific gene expression profiles in bovine placentomes using a combination of microarray and in silico analysis. In silico analysis indicated that the AP-2 family may be a consensus regulator for the gene cluster that characteristically appears in bovine placenta as gestation progresses. In particular, TFAP2A and TFAP2B may be involved in regulating binucleate cell-specific genes such as CSH1, some PAG or SULT1E1. These results suggest that the AP-2 family is a specific transcription factor for clusters of crucial placental genes. This is the first evidence that TFAP2A may regulate the differentiation and specific functions of BNC in bovine placenta

    Gene expression profiles of novel caprine placental prolactin-related proteins similar to bovine placental prolactin-related proteins

    Get PDF
    BACKGROUND: This study reports the identification of a full-length cDNA sequence for two novel caprine prolactin-related proteins (cPRP1 and cPRP6), and their localization and quantitative expression in the placenta. Caprine PRPs are compared with known bovine PRPs. We examined their evolution and role in the ruminant placenta. RESULTS: Full-length cPRP1 and cPRP6 cDNA were cloned with a 717- and 720- nucleotide open-reading frame corresponding to proteins of 238 and 239 amino acids. The cPRP1 predicted amino acid sequence shares a 72% homology with bovine PRP1 (bPRP1). The cPRP6 predicted amino acid sequence shares a 74% homology with bovine PRP6 (bPRP6). The two cPRPs as well as bPRPs were detected only in the placentome by RT-PCR. Analysis by in situ hybridization revealed the presence of both cPRPs mRNA in the trophoblast binucleate cells. These mRNA were quantified by real-time RT-PCR analysis of the placentome at 30, 50, 90 and 140 days of pregnancy. Both new cPRP genes were able to translate a mature protein in a mammalian cell-expression system. Western blotting established the molecular sizes of 33 kDa for cPRP1 with FLAG-tag and 45 kDa for cPRP6 with FLAG-tag. The sequence properties and localized expression of cPRP1 and cPRP6 were similar to those of bovine. However, their expression profiles differed from those in bovine placenta. Although this study demonstrated possible roles of PRPs in caprine placenta, PRPs may regulate binucleate-cell functions like those in bovine, but their crucial roles are still unclear. CONCLUSION: We have identified the novel PRPs in caprine placenta. Localization and quantitative expression of caprine PRPs were compared with bovine PRPs. The data indicate that PRP genes in caprine placenta have coordination functions for gestation, as they do in bovine. This is the first study of PRPs function in caprine placenta

    Expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and its related extracellular matrix degrading enzymes in the endometrium during estrous cycle and early gestation in cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extracellular matrix metalloproteinase inducer (EMMPRIN) regulates several biological functions involving the modulation of cell behaviors via cell-cell and cell-matrix interactions. According to its diverse functions, we hypothesized that EMMPRIN may play an important role in endometrial remodeling and establishment of pregnancy in cow.</p> <p>Methods</p> <p>In this study, endometrial tissues from the cyclic cows during before ovulation, after ovulation and middle of estrous cycle; and pregnant endometrial tissues from Day 19 to 35 of gestation have been used. Expression of mRNA was analyzed by RT-PCR, qPCR and in situ hybridization whereas protein expression by immunohistochemistry and western blot analysis.</p> <p>Results</p> <p>EMMPRIN mRNA was expressed in both cyclic and pregnant endometrium and significantly higher in the endometrium at Day 35 of gestation than the cyclic endometrium. In Western blot analysis, an approximately 65 kDa band was detected in the endometrium, and approximately 51 kDa in the cultured bovine epithelial cells and BT-1 cells, respectively. Both in situ hybridization and immunohistochemistry data showed that EMMPRIN was primarily expressed in luminal and glandular epithelium with strong staining on Day 19 conceptus. At Day 19 of gestation, expression of EMMPRIN mRNA on luminal epithelium was decreased than that observed at middle of estrous cycle, however, on Day 30 of gestation, slightly increased expression was found at the site of placentation. Expression of matrix metalloproteinase-2 (MMP-2) and MMP-14 mRNA were mainly detected in stroma and their expression also decreased at Day 19 of gestation however it was also expressed at the site of placentation at Day 30 of gestation as observed for EMMPRIN. Expression of MMP-1 or -9 mRNA was very low and was below the detection limit in the cyclic and pregnant endometrium.</p> <p>Conclusion</p> <p>EMMPRIN from the luminal epithelium may regulate the expression of stromal MMP-2 and -14 suggesting its crucial role in adhesion and fusion of embryo to luminal epithelium by directly itself through physiological tissues remodeling and developmental process, and/or stimulating MMPs to compensate endometrial functions.</p
    corecore