11 research outputs found

    On the effect of antiresorptive drugs on the bone remodeling of the mandible after dental implantation: a mathematical model

    No full text
    Bone remodeling identifies the process of permanent bone change with new bone formation and old bone resorption. Understanding this process is essential in many applications, such as optimizing the treatment of diseases like osteoporosis, maintaining bone density in long-term periods of disuse, or assessing the long-term evolution of the bone surrounding prostheses after implantation. A particular case of study is the bone remodeling process after dental implantation. Despite the overall success of this type of implants, the increasing life expectancy in developed countries has boosted the demand for dental implants in patients with osteoporosis. Although several studies demonstrate a high success rate of dental implants in osteoporotic patients, it is also known that the healing time and the failure rate increase, necessitating the adoption of pharmacological measures to improve bone quality in those patients. However, the general efficacy of these antiresorptive drugs for osteoporotic patients is still controversial, requiring more experimental and clinical studies. In this work, we investigate the effect of different doses of several drugs, used nowadays in osteoporotic patients, on the evolution of bone density after dental implantation. With this aim, we use a pharmacokinetic–pharmacodynamic (PK/PD) mathematical model that includes the effect of antiresorptive drugs on the RANK/RANK-L/OPG pathway, as well as the mechano-chemical coupling with external mechanical loads. This mechano-PK/PD model is then used to analyze the evolution of bone in normal and osteoporotic mandibles after dental implantation with different drug dosages. We show that using antiresorptive agents such as bisphosphonates or denosumab increases bone density and the associated mechanical properties, but at the same time, it also increases bone brittleness. We conclude that, despite the many limitations of these very complex models, the one presented here is capable of predicting qualitatively the evolution of some of the main biological and chemical variables associated with the process of bone remodeling in patients receiving drugs for osteoporosis, so it could be used to optimize dental implant design and coating for osteoporotic patients, as well as the drug dosage protocol for patient-specific treatments

    Tooth size discrepancies in Irish orthodontic patients among different malocclusion groups

    No full text
    OBJECTIVE: To determine the prevalence of tooth size discrepancies (TSDs) in an Irish orthodontic population among different malocclusion groups. MATERIALS AND METHODS: From 850 pretreatment sets of orthodontic models at a university clinic, 240 were selected with 30 female and 30 male sets for each malocclusion (Class I, Class II division 1, Class II division 2, and Class III). Digital models were produced, and the mesial and distal contact points were digitized to calculate overall and anterior tooth size ratios. The differences between the male and female groups and among the malocclusion groups were analyzed using two-way analysis of variance (ANOVA) (P < .05). RESULTS: A clinically significant anterior TSD (more than two standard deviations from the Bolton means) existed in 37.9% of the subjects. No differences existed in the prevalence of overall TSDs between the male and female groups (P  =  .5913) or among the malocclusion groups (P  =  .0809). For the mean anterior tooth size ratios in the male group, the values for Class III and Class II division 2 were higher than in Class II division 1, and the value for Class II division 2 was higher than in Class I (P  =  .0184). CONCLUSIONS: The prevalence of anterior tooth size discrepancies in this sample of Irish orthodontic patients was 37.9%. There were no statistically significant differences in the prevalence of mean overall TSDs with regard to malocclusion or gender. In the male group, the mean anterior tooth size ratio was higher in Class III and in Class II division 2 malocclusion than in Class II division 1 and higher in Class II division 2 malocclusion than in Class I malocclusion
    corecore