20 research outputs found

    A direct proof of AGT conjecture at beta = 1

    Get PDF
    The AGT conjecture claims an equivalence of conformal blocks in 2d CFT and sums of Nekrasov functions (instantonic sums in 4d SUSY gauge theory). The conformal blocks can be presented as Dotsenko-Fateev beta-ensembles, hence, the AGT conjecture implies the equality between Dotsenko-Fateev beta-ensembles and the Nekrasov functions. In this paper, we prove it in a particular case of beta=1 (which corresponds to c = 1 at the conformal side and to epsilon_1 + epsilon_2 = 0 at the gauge theory side) in a very direct way. The central role is played by representation of the Nekrasov functions through correlators of characters (Schur polynomials) in the Selberg matrix models. We mostly concentrate on the case of SU(2) with 4 fundamentals, the extension to other cases being straightforward. The most obscure part is extending to an arbitrary beta: for beta \neq 1, the Selberg integrals that we use do not reproduce single Nekrasov functions, but only sums of them.Comment: 26 pages, 16 figures, 8 table

    Torus HOMFLY as the Hall-Littlewood Polynomials

    Full text link
    We show that the HOMFLY polynomials for torus knots T[m,n] in all fundamental representations are equal to the Hall-Littlewood polynomials in representation which depends on m, and with quantum parameter, which depends on n. This makes the long-anticipated interpretation of Wilson averages in 3d Chern-Simons theory as characters precise, at least for the torus knots, and calls for further studies in this direction. This fact is deeply related to Hall-Littlewood-MacDonald duality of character expansion of superpolynomials found in arXiv:1201.3339. In fact, the relation continues to hold for extended polynomials, but the symmetry between m and n is broken, then m is the number of strands in the braid. Besides the HOMFLY case with q=t, the torus superpolynomials are reduced to the single Hall-Littlewood characters in the two other distinguished cases: q=0 and t=0.Comment: 9 page

    Resolvents and Seiberg-Witten representation for Gaussian beta-ensemble

    Full text link
    The exact free energy of matrix model always obeys the Seiberg-Witten (SW) equations on a complex curve defined by singularities of the quasiclassical resolvent. The role of SW differential is played by the exact one-point resolvent. We show that these properties are preserved in generalization of matrix models to beta-ensembles. However, since the integrability and Harer-Zagier topological recursion are still unavailable for beta-ensembles, we need to rely upon the ordinary AMM/EO recursion to evaluate the first terms of the genus expansion. Consideration in this paper is restricted to the Gaussian model.Comment: 15 page

    On "Dotsenko-Fateev" representation of the toric conformal blocks

    Full text link
    We demonstrate that the recent ansatz of arXiv:1009.5553, inspired by the original remark due to R.Dijkgraaf and C.Vafa, reproduces the toric conformal blocks in the same sense that the spherical blocks are given by the integral representation of arXiv:1001.0563 with a peculiar choice of open integration contours for screening insertions. In other words, we provide some evidence that the toric conformal blocks are reproduced by appropriate beta-ensembles not only in the large-N limit, but also at finite N. The check is explicitly performed at the first two levels for the 1-point toric functions. Generalizations to higher genera are briefly discussed.Comment: 10 page

    Brezin-Gross-Witten model as "pure gauge" limit of Selberg integrals

    Get PDF
    The AGT relation identifies the Nekrasov functions for various N=2 SUSY gauge theories with the 2d conformal blocks, which possess explicit Dotsenko-Fateev matrix model (beta-ensemble) representations the latter being polylinear combinations of Selberg integrals. The "pure gauge" limit of these matrix models is, however, a non-trivial multiscaling large-N limit, which requires a separate investigation. We show that in this pure gauge limit the Selberg integrals turn into averages in a Brezin-Gross-Witten (BGW) model. Thus, the Nekrasov function for pure SU(2) theory acquires a form very much reminiscent of the AMM decomposition formula for some model X into a pair of the BGW models. At the same time, X, which still has to be found, is the pure gauge limit of the elliptic Selberg integral. Presumably, it is again a BGW model, only in the Dijkgraaf-Vafa double cut phase.Comment: 21 page

    Proving AGT conjecture as HS duality: extension to five dimensions

    Full text link
    We extend the proof from arXiv:1012.3137, which interprets the AGT relation as the Hubbard-Stratonovich duality relation to the case of 5d gauge theories. This involves an additional q-deformation. Not surprisingly, the extension turns out to be trivial: it is enough to substitute all relevant numbers by q-numbers in all the formulas, Dotsenko-Fateev integrals by the Jackson sums and the Jack polynomials by the MacDonald ones. The problem with extra poles in individual Nekrasov functions continues to exist, therefore, such a proof works only for \beta = 1, i.e. for q=t in MacDonald's notation. For \beta\ne 1 the conformal blocks are related in this way to a non-Nekrasov decomposition of the LMNS partition function into a double sum over Young diagrams.Comment: 18 page

    Challenges of beta-deformation

    Full text link
    A brief review of problems, arising in the study of the beta-deformation, also known as "refinement", which appears as a central difficult element in a number of related modern subjects: beta \neq 1 is responsible for deviation from free fermions in 2d conformal theories, from symmetric omega-backgrounds with epsilon_2 = - epsilon_1 in instanton sums in 4d SYM theories, from eigenvalue matrix models to beta-ensembles, from HOMFLY to super-polynomials in Chern-Simons theory, from quantum groups to elliptic and hyperbolic algebras etc. The main attention is paid to the context of AGT relation and its possible generalizations.Comment: 20 page

    Matrix Model Conjecture for Exact BS Periods and Nekrasov Functions

    Full text link
    We give a concise summary of the impressive recent development unifying a number of different fundamental subjects. The quiver Nekrasov functions (generalized hypergeometric series) form a full basis for all conformal blocks of the Virasoro algebra and are sufficient to provide the same for some (special) conformal blocks of W-algebras. They can be described in terms of Seiberg-Witten theory, with the SW differential given by the 1-point resolvent in the DV phase of the quiver (discrete or conformal) matrix model (\beta-ensemble), dS = ydz + O(\epsilon^2) = \sum_p \epsilon^{2p} \rho_\beta^{(p|1)}(z), where \epsilon and \beta are related to the LNS parameters \epsilon_1 and \epsilon_2. This provides explicit formulas for conformal blocks in terms of analytically continued contour integrals and resolves the old puzzle of the free-field description of generic conformal blocks through the Dotsenko-Fateev integrals. Most important, this completes the GKMMM description of SW theory in terms of integrability theory with the help of exact BS integrals, and provides an extended manifestation of the basic principle which states that the effective actions are the tau-functions of integrable hierarchies.Comment: 14 page

    Exact 2-point function in Hermitian matrix model

    Full text link
    J. Harer and D. Zagier have found a strikingly simple generating function for exact (all-genera) 1-point correlators in the Gaussian Hermitian matrix model. In this paper we generalize their result to 2-point correlators, using Toda integrability of the model. Remarkably, this exact 2-point correlation function turns out to be an elementary function - arctangent. Relation to the standard 2-point resolvents is pointed out. Some attempts of generalization to 3-point and higher functions are described.Comment: 31 pages, 1 figur

    The matrix model version of AGT conjecture and CIV-DV prepotential

    Full text link
    Recently exact formulas were provided for partition function of conformal (multi-Penner) beta-ensemble in the Dijkgraaf-Vafa phase, which, if interpreted as Dotsenko-Fateev correlator of screenings and analytically continued in the number of screening insertions, represents generic Virasoro conformal blocks. Actually these formulas describe the lowest terms of the q_a-expansion, where q_a parameterize the shape of the Penner potential, and are exact in the filling numbers N_a. At the same time, the older theory of CIV-DV prepotential, straightforwardly extended to arbitrary beta and to non-polynomial potentials, provides an alternative expansion: in powers of N_a and exact in q_a. We check that the two expansions coincide in the overlapping region, i.e. for the lowest terms of expansions in both q_a and N_a. This coincidence is somewhat non-trivial, since the two methods use different integration contours: integrals in one case are of the B-function (Euler-Selberg) type, while in the other case they are Gaussian integrals.Comment: 27 pages, 1 figur
    corecore