74 research outputs found

    Dual array EEG-fMRI : An approach for motion artifact suppression in EEG recorded simultaneously with fMRI

    Get PDF
    Objective: Although simultaneous recording of EEG and MRI has gained increasing popularity in recent years, the extent of its clinical use remains limited by various technical challenges. Motion interference is one of the major challenges in EEG-fMRI. Here we present an approach which reduces its impact with the aid of an MR compatible dual-array EEG (daEEG) in which the EEG itself is used both as a brain signal recorder and a motion sensor. Methods: We implemented two arrays of EEG electrodes organized into two sets of nearly orthogonally intersecting wire bundles. The EEG was recorded using referential amplifiers inside a 3 T MR-scanner. Virtual bipolar measurements were taken both along bundles (creating a small wire loop and therefore minimizing artifact) and across bundles (creating a large wire loop and therefore maximizing artifact). Independent component analysis (ICA) was applied. The resulting ICA components were classified into brain signal and noise using three criteria: 1) degree of two-dimensional spatial correlation between ICA coefficients along bundles and across bundles; 2) amplitude along bundles vs. across bundles; 3) correlation with ECG. The components which passed the criteria set were transformed back to the channel space. Motion artifact suppression and the ability to detect interictal epileptic spikes following daEEG and Optimal Basis Set (OBS) procedures were compared in 10 patients with epilepsy. Results: The SNR achieved by daEEG was 11.05 +/- 3.10 and by OBS was 8.25 +/- 1.01 (p <0.00001). In 9 of 10 patients, more spikes were detected after daEEG than after OBS (p <0.05). Significance: daEEG improves signal quality in EEG-fMRI recordings, expanding its clinical and research potential. (C) 2016 Elsevier Inc. All rights reserved.Peer reviewe

    Epilepsy and mental retardation limited to females: an under-recognized disorder

    Get PDF
    Epilepsy and Mental Retardation limited to Females (EFMR) which links to Xq22 has been reported in only one family. We aimed to determine if there was a distinctive phenotype that would enhance recognition of this disorder.We ascertained four unrelated families (two Australian, two Israeli) where seizures in females were transmitted through carrier males. Detailed clinical assessment was performed on 58 individuals, using a validated seizure questionnaire, neurological examination and review of EEG and imaging studies. Gene localization was examined using Xq22 microsatellite markers. Twenty-seven affected females had a mean seizure onset of 14 months (range 6^36) typically presenting with convulsions. All had convulsive attacks at some stage, associated with fever in 17 out of 27 (63%). Multiple seizure types occurred including tonic-clonic (26), tonic (4), partial (11), absence (5), atonic (3) and myoclonic (4). Seizures ceased at mean 12 years. Developmental progress varied from normal (7), to always delayed (4) to normal followed by regression (12). Intellect ranged from normal to severe intellectual disability (ID), with 67% of females having ID or being of borderline intellect. Autistic (6), obsessive (9) and aggressive (7) features were prominent. EEGs showed generalized and focal epileptiform abnormalities. Five obligate male carriers had obsessional tendencies. Linkage to Xq22 was confirmed (maximum lod 3.5 at h = 0).We conclude that EFMR is a distinctive, under-recognized familial syndrome where girls present with convulsions in infancy, often associated with intellectual impairment and autistic features. The unique inheritance pattern with transmission by males is perplexing. Clinical recognition is straightforward in multiplex families due to the unique inheritance pattern; however, this disorder should be considered in smaller families where females alone have seizures beginning in infancy, particularly in the setting of developmental delay. In single cases, diagnosis will depend on identification of the molecular basis. Keywords: epilepsy; intellectual disability; females; X-linked inheritance; autistic features Abbreviations: BAC = bacterial artificial chromosome; CFNS = craniofrontonasal syndrome; EFMR = epilepsy and mental retardation limited to females; ID = intellectual disability

    Updated measurement of decay-time-dependent CP asymmetries in D-0 -> K+ K- and D-0 -> pi(+)pi(-) decays

    Get PDF
    A search for decay-time-dependent charge-parity (CP) asymmetry in D0 \u2192 K+ K 12 and D0 \u2192 \u3c0+ \u3c0 12 decays is performed at the LHCb experiment using proton-proton collision data recorded at a center-of-mass energy of 13 TeV, and corresponding to an integrated luminosity of 5.4 fb^ 121. The D0 mesons are required to originate from semileptonic decays of b hadrons, such that the charge of the muon identifies the flavor of the neutral D meson at production. The asymmetries in the effective decay widths of D0 and anti-D0 mesons are determined to be A_\u393(K+ K 12) = ( 124.3 \ub1 3.6 \ub1 0.5) 7 10^ 124 and A_\u393(\u3c0+ \u3c0 12) = (2.2 \ub1 7.0 \ub1 0.8) 7 10^ 124 , where the uncertainties are statistical and systematic, respectively. The results are consistent with CP symmetry and, when combined with previous LHCb results, yield A_\u393(K+ K 12) = ( 124.4 \ub1 2.3 \ub1 0.6) 7 10^ 124 and A_\u393(\u3c0+ \u3c0 12) = (2.5 \ub1 4.3 \ub1 0.7) 7 10^ 124

    Determination of quantum numbers for several excited charmed mesons observed in B- -> D*(+)pi(-) pi(-) decays

    Get PDF
    A four-body amplitude analysis of the B − → D * + π − π − decay is performed, where fractions and relative phases of the various resonances contributing to the decay are measured. Several quasi-model-independent analyses are performed aimed at searching for the presence of new states and establishing the quantum numbers of previously observed charmed meson resonances. In particular the resonance parameters and quantum numbers are determined for the D 1 ( 2420 ) , D 1 ( 2430 ) , D 0 ( 2550 ) , D ∗ 1 ( 2600 ) , D 2 ( 2740 ) and D ∗ 3 ( 2750 ) states. The mixing between the D 1 ( 2420 ) and D 1 ( 2430 ) resonances is studied and the mixing parameters are measured. The dataset corresponds to an integrated luminosity of 4.7     fb − 1 , collected in proton-proton collisions at center-of-mass energies of 7, 8 and 13 TeV with the LHCb detector

    Updated measurement of decay-time-dependent CP asymmetries in D-0 -> K+ K- and D-0 -> pi(+)pi(-) decays

    Get PDF
    A search for decay-time-dependent charge-parity (CP) asymmetry in D-0 -> K+ K- and D-0 -> pi(+)pi(-) eff decays is performed at the LHCb experiment using proton-proton collision data recorded at a center-of-mass energy of 13 TeV, and corresponding to an integrated luminosity of 5.4 fb(-1). The D-0 mesons are required to originate from semileptonic decays of b hadrons, such that the charge of the muon identifies the flavor of the neutral D meson at production. The asymmetries in the effective decay widths of D-0 and (D) over bar (0) mesons are determined to be A(Gamma)(K+ K-) = (-4.3 +/- 3.6 +/- 0.5) x 10(-4) and A(Gamma) (K+ K- ) = (2.2 +/- 7.0 +/- 0.8) x 10(-4), where the uncertainties are statistical and systematic, respectively. The results are consistent with CP symmetry and, when combined with previous LHCb results, yield A(Gamma) (K+ K-) = (-4.4 +/- 2.3 +/- 0.6) x 10(-4) and A(Gamma) (pi(+)pi(-))= (2.5 +/- 4.3 +/- 0.7) x 10(-4)

    Epilepsy and mental retardation limited to females: an under-recognized disorder

    No full text
    Epilepsy and Mental Retardation limited to Females (EFMR) which links to Xq22 has been reported in only one family. We aimed to determine if there was a distinctive phenotype that would enhance recognition of this disorder. We ascertained four unrelated families (two Australian, two Israeli) where seizures in females were transmitted through carrier males. Detailed clinical assessment was performed on 58 individuals, using a validated seizure questionnaire, neurological examination and review of EEG and imaging studies. Gene localization was examined using Xq22 microsatellite markers. Twenty-seven affected females had a mean seizure onset of 14 months (range 6-36) typically presenting with convulsions. All had convulsive attacks at some stage, associated with fever in 17 out of 27 (63%). Multiple seizure types occurred including tonic-clonic (26), tonic (4), partial (11), absence (5), atonic (3) and myoclonic (4). Seizures ceased at mean 12 years. Developmental progress varied from normal (7), to always delayed (4) to normal followed by regression (12). Intellect ranged from normal to severe intellectual disability (ID), with 67% of females having ID or being of borderline intellect. Autistic (6), obsessive (9) and aggressive (7) features were prominent. EEGs showed generalized and focal epileptiform abnormalities. Five obligate male carriers had obsessional tendencies. Linkage to Xq22 was confirmed (maximum lod 3.5 at = 0). We conclude that EFMR is a distinctive, under-recognized familial syndrome where girls present with convulsions in infancy, often associated with intellectual impairment and autistic features. The unique inheritance pattern with transmission by males is perplexing. Clinical recognition is straightforward in multiplex families due to the unique inheritance pattern; however, this disorder should be considered in smaller families where females alone have seizures beginning in infancy, particularly in the setting of developmental delay. In single cases, diagnosis will depend on identification of the molecular basis.Ingrid E. Scheffer... Leanne M. Dibbens... Eric Haan... Jozef Gecz, John C. Mulley... et al
    corecore