5 research outputs found
Couches d'alumine épaisses de nanomètre déposées par ALD sur métaux : une étude d'analyse électrochimique et superficielle comparative de propriétés de corrosion
Corrosion protection by ultrathin (≤ 50 nm) alumina films deposited by atomic layer deposition (ALD) on copper and aluminium at 250°C was studied in 0.5 M NaCl aqueous solution by combining electrochemical and surface analytical methods. The study of ALD Al2O3 on Cu substrate included investigation of the effect of the coating thickness, the effect of an interfacial oxide, the effect of surface preparation and the durability of the coating. For ALD Al2O3 on Al substrate, the work focused on the examination of the effect of the deposited coating thickness. ALD alumina coatings showed excellent corrosion properties on electropolished copper substrates, while they failed to protect the annealed substrate, as a result of poor adhesion to a smoothened surface. Modification of interfacial native copper oxide by its pre-treatment led to better corrosion protection of ALD alumina on copper substrate. Despite its remarkable sealing properties on electropolished Cu substrate, corrosion protection of ALD alumina was not durable. Coating of Al substrate with ALD Al2O3 led to significant increase of polarization resistance. Better performance was obtained for 10 and 20 nm coatings on Al than on Cu. Apart from significant decrease of current, the pitting potential was increased in presence of 20 and 50 nm coatings, which was not achieved with 10 nm due to its low thickness. This study was a preliminary study for application of ALD alumina coatings for corrosion protection of Al-Cu alloys in combination with other ALD compositions.La protection contre la corrosion par des films ultramince (≤50 nm) d'alumine déposées par ALD sur le cuivre et l'aluminium à 250°C a été étudiée dans une solution aqueuse 0,5 M de NaCl en combinant méthodes d'analyse électrochimique et de surface. L'étude de l'alumine ALD sur un substrat Cu comprend l'effet de l'épaisseur du revêtement, l'effet de l'oxyde interfacial, l'effet de la préparation de la surface et la durabilité du revêtement. Pour le substrat Al, le travail a porté sur l'examen de l'effet de l'épaisseur du revêtement. Les revêtements ont montré d'excellentes propriétés de corrosion sur des substrats Cu électropoli, tandis qu'ils ont échoué à protéger le substrat recuit, de fait d'une mauvaise adhérence à une surface lissée. L'amélioration de la résistance à la corrosion d'alumine ALD sur le substrat Cu est obtenue en l'absence de vieillissement de l'oxyde natif interfacial, et sa modification par un prétraitement. En dépit de remarquables propriétés d'étanchéité sur un substrat Cu électropoli, la protection contre la corrosion de l'alumine ALD n'est pas durable. Le revêtement du substrat Al avec l'alumine ALD conduit à l'augmentation significative de la résistance à la corrosion. Le potentiel de piqûration est augmenté en présence des revêtements l'épaisseur de 20 et 50 nm, ce qui n'a pas été obtenus avec 10 nm en raison de sa faible épaisseur. Cette étude est une étude préliminaire pour l'application de revêtements d'alumine ALD pour la protection contre la corrosion des alliages Al-Cu en combinaison avec d'autres compositions ALD
The role of surface preparation in corrosion protection of copper with nanometer-thick ALD alumina coatings
Surface smoothening by substrate annealing was studied as a pre-treatment for improving the corrosion protection provided to copper by 10, 20 and 50 nm thick alumina coatings deposited by atomic layer deposition. The interplay between substrate surface state and deposited film thickness for controlling the corrosion protection provided by ultrathin barrier films is demonstrated. Pre-annealing at 750 degrees C heals out the dispersed surface heterogeneities left by electropolishing and reduces the surface roughness to less than 2 nm independently of the deposited film thickness. For 10 nm coatings, substrate surface smoothening promotes the corrosion resistance. However, for 20 and 50 nm coatings, it is detrimental to the corrosion protection due to local detachment of the deposited films. The weaker adherence of the thicker coatings is assigned to the stresses accumulated in the films with increasing deposited thickness. Healing out the local heterogeneities on the substrate surface diminishes the interfacial strength that is bearing the stresses of the deposited films, thereby increasing adhesion failure for the thicker films. Pitting corrosion occurs at the local sites of adhesion failure. Intergranular corrosion occurs at the initially well coated substrate grain boundaries because of the growth of a more defective and permeable coating at grain boundaries. (C) 2016 Elsevier B.V. All rights reserved.Peer reviewe
Lithium Storage Mechanisms and Effect of Partial Cobalt Substitution in Manganese Carbonate Electrodes
A promising group of inorganic salts recently emerged
for the negative
electrode of advanced lithium-ion batteries. Manganese carbonate combines
low weight and significant lithium storage properties. Electron paramagnetic
resonance (EPR) and magnetic measurements are used to study the environment
of manganese ions during cycling in lithium test cells. To observe
reversible lithium storage into manganese carbonate, preparation by
a reverse micelles method is used. The resulting nanostructuration
favors a capacitive lithium storage mechanism in manganese carbonate
with good rate performance. Partial substitution of cobalt by manganese
improves cycling efficiency at high rates
Lithium Storage Mechanisms and Effect of Partial Cobalt Substitution in Manganese Carbonate Electrodes
A promising group of inorganic salts recently emerged for the negative
electrode of advanced lithium-ion batteries. Manganese carbonate combines low weight and
significant lithium storage properties. Electron paramagnetic resonance (EPR) and magnetic
measurements are used to study the environment of manganese ions during cycling in
lithium test cells. To observe reversible lithium storage into manganese carbonate,
preparation by a reverse micelles method is used. The resulting nanostructuration favors a
capacitive lithium storage mechanism in manganese carbonate with good rate performance.
Partial substitution of cobalt by manganese improves cycling efficiency at high rates.Depto. de Química InorgánicaFac. de Ciencias QuímicasTRUEpu