16 research outputs found

    Storage and propagation of Rydberg polaritons in a cold atomic medium

    Get PDF

    Electromagnetically induced transparency of ultralong-range Rydberg molecules

    Get PDF
    We study the impact of Rydberg molecule formation on the storage and retrieval of Rydberg polaritons in an ultracold atomic medium. We observe coherent revivals appearing in the retrieval efficiency of stored photons that originate from simultaneous excitation of Rydberg atoms and Rydberg molecules in the system with subsequent interference between the possible storage paths. We show that over a large range of principal quantum numbers the observed results can be described by a two-state model including only the atomic Rydberg state and the Rydberg dimer molecule state. At higher principal quantum numbers the influence of polyatomic molecules becomes relevant and the dynamics of the system undergoes a transition from coherent evolution of a few-state system to an effective dephasing into a continuum of molecular states.Comment: Submitted to PR

    Free-Space Quantum Electrodynamics with a single Rydberg superatom

    Get PDF
    The interaction of a single photon with an individual two-level system is the textbook example of quantum electrodynamics. Achieving strong coupling in this system so far required confinement of the light field inside resonators or waveguides. Here, we demonstrate strong coherent coupling between a single Rydberg superatom, consisting of thousands of atoms behaving as a single two-level system due to the Rydberg blockade, and a propagating light pulse containing only a few photons. The strong light-matter coupling in combination with the direct access to the outgoing field allows us to observe for the first time the effect of the interactions on the driving field at the single photon level. We find that all our results are in quantitative agreement with the predictions of the theory of a single two-level system strongly coupled to a single quantized propagating light mode. The demonstrated coupling strength opens the way towards interfacing photonic and atomic qubits and preparation of propagating non-classical states of light, two crucial building blocks in future quantum networks

    Photon Subtraction by Many-Body Decoherence

    Get PDF
    We experimentally and theoretically investigate the scattering of a photonic quantum field from another stored in a strongly interacting atomic Rydberg ensemble. Considering the many-body limit of this problem, we derive an exact solution to the scattering-induced spatial decoherence of multiple stored photons, allowing for a rigorous understanding of the underlying dissipative quantum dynamics. Combined with our experiments, this analysis reveals a correlated coherence-protection process in which the scattering from one excitation can shield all others from spatial decoherence. We discuss how this effect can be used to manipulate light at the quantum level, providing a robust mechanism for single-photon subtraction, and experimentally demonstrate this capability

    Efficient visible luminescence of nanocrystalline silicon prepared from amorphous silicon films by thermal annealing and stain etching

    Get PDF
    Films of nanocrystalline silicon (nc-Si) were prepared from hydrogenated amorphous silicon (a-Si:H) by using rapid thermal annealing. The formed nc-Si films were subjected to stain etching in hydrofluoric acid solutions in order to passivate surfaces of nc-Si. The optical reflectance spectroscopy revealed the nc-Si formation as well as the high optical quality of the formed films. The Raman scattering spectroscopy was used to estimate the mean size and volume fraction of nc-Si in the annealed films, which were about 4 to 8 nm and 44 to 90%, respectively, depending on the annealing regime. In contrast to as-deposited a-Si:H films, the nc-Si films after stain etching exhibited efficient photoluminescence in the spectral range of 600 to 950 nm at room temperature. The photoluminescence intensity and lifetimes of the stain etched nc-Si films were similar to those for conventional porous Si formed by electrochemical etching. The obtained results indicate new possibilities to prepare luminescent thin films for Si-based optoelectronics

    Experimental Study of Impact-Protective Elements for Unidirectional Ribs of Lattice Composite Aircraft Structures

    No full text
    Lattice structures based on unidirectional composite ribs is currently one of the most promising directions of research aiming to create lightweight and reliable structure of future aircrafts [1]. Hybrid structure concepts based on lattice layouts have been developed for a number of conventional and non-conventional civil aircraft configurations, giving up to 15-20% weight saving as compared to conventional composite structures based on laminated skin and stiffeners [2]. One of the most critical problems of load-bearing lattice composite structures is very high sensitivity to impact loads, which is even more crucial than for the laminated composite structures. At the same time, topology of lattice grid makes it possible to create reliable protective system for the ribs, which can be effective in terms of weight expenses
    corecore