60 research outputs found

    Selective modulation of chemical and electrical synapses of Helix neuronal networks during in vitro development

    Get PDF
    BACKGROUND: A large number of invertebrate models, including the snail Helix, emerged as particularly suitable tools for investigating the formation of synapses and the specificity of neuronal connectivity. Helix neurons can be individually identified and isolated in cell culture, showing well-conserved size, position, biophysical properties, synaptic connections, and physiological functions. Although we previously showed the potential usefulness of Helix polysynaptic circuits, a full characterization of synaptic connectivity and its dynamics during network development has not been performed. RESULTS: In this paper, we systematically investigated the in vitro formation of polysynaptic circuits, among Helix B2 and the serotonergic C1 neurons, from a morphological and functional point of view. Since these cells are generally silent in culture, networks were chemically stimulated with either high extracellular potassium concentrations or, alternatively, serotonin. Potassium induced a transient depolarization of all neurons. On the other hand, we found prolonged firing activity, selectively maintained following the first serotonin application. Statistical analysis revealed no significant changes in neuronal dynamics during network development. Moreover, we demonstrated that the cell-selective effect of serotonin was also responsible for short-lasting alterations in C1 excitability, without long-term rebounds. Estimation of the functional connections by means of cross-correlation analysis revealed that networks under elevated KCl concentrations exhibited strongly correlated signals with short latencies (about 5 ms), typical of electrically coupled cells. Conversely, neurons treated with serotonin were weakly connected with longer latencies (exceeding 20 ms) between the interacting neurons. Finally, we clearly demonstrated that these two types of correlations (in terms of strength/latency) were effectively related to the presence of electrical or chemical connections, by comparing Micro-Electrode Array (MEA) signal traces with intracellularly recorded cell pairs. CONCLUSIONS: Networks treated with either potassium or serotonin were predominantly interconnected through electrical or chemical connections, respectively. Furthermore, B2 response and short-term increase in C1 excitability induced by serotonin is sufficient to trigger spontaneous activity with chemical connections, an important requisite for long-term maintenance of firing activity

    In Vitro Studies of Neuronal Networks and Synaptic Plasticity in Invertebrates and in Mammals Using Multielectrode Arrays

    Get PDF
    Brain functions are strictly dependent on neural connections formed during development and modified during life. The cellular and molecular mechanisms underlying synaptogenesis and plastic changes involved in learning and memory have been analyzed in detail in simple animals such as invertebrates and in circuits of mammalian brains mainly by intracellular recordings of neuronal activity. In the last decades, the evolution of techniques such as microelectrode arrays (MEAs) that allow simultaneous, long-lasting, noninvasive, extracellular recordings from a large number of neurons has proven very useful to study long-term processes in neuronal networks in vivo and in vitro. In this work, we start off by briefly reviewing the microelectrode array technology and the optimization of the coupling between neurons and microtransducers to detect subthreshold synaptic signals. Then, we report MEA studies of circuit formation and activity in invertebrate models such as Lymnaea, Aplysia, and Helix. In the following sections, we analyze plasticity and connectivity in cultures of mammalian dissociated neurons, focusing on spontaneous activity and electrical stimulation. We conclude by discussing plasticity in closed-loop experiments

    Pentylenetetrazol-induced epileptiform activity affects basal synaptic transmission and short-term plasticity in monosynaptic connections.

    Get PDF
    Epileptic activity is generally induced in experimental models by local application of epileptogenic drugs, including pentylenetetrazol (PTZ), widely used on both vertebrate and invertebrate neurons. Despite the high prevalence of this neurological disorder and the extensive research on it, the cellular and molecular mechanisms underlying epileptogenesis still remain unclear. In this work, we examined PTZ-induced neuronal changes in Helix monosynaptic circuits formed in vitro, as a simpler experimental model to investigate the effects of epileptiform activity on both basal release and post-tetanic potentiation (PTP), a form of short-term plasticity. We observed a significant enhancement of basal synaptic strength, with kinetics resembling those of previously described use-dependent forms of plasticity, determined by changes in estimated quantal parameters, such as the readily releasable pool and the release probability. Moreover, these neurons exhibited a strong reduction in PTP expression and in its decay time constant, suggesting an impairment in the dynamic reorganization of synaptic vesicle pools following prolonged stimulation of synaptic transmission. In order to explain this imbalance, we determined whether epileptic activity is related to the phosphorylation level of synapsin, which is known to modulate synaptic plasticity. Using western blot and immunocytochemical staining we found a PTZ-dependent increase in synapsin phosphorylation at both PKA/CaMKI/IV and MAPK/Erk sites, both of which are important for modulating synaptic plasticity. Taken together, our findings suggest that prolonged epileptiform activity leads to an increase in the synapsin phosphorylation status, thereby contributing to an alteration of synaptic strength in both basal condition and tetanus-induced potentiation

    Synaptic Functions of Invertebrate Varicosities: What Molecular Mechanisms Lie Beneath

    Get PDF
    In mammalian brain, the cellular and molecular events occurring in both synapse formation and plasticity are difficult to study due to the large number of factors involved in these processes and because the contribution of each component is not well defined. Invertebrates, such as Drosophila, Aplysia, Helix, Lymnaea, and Helisoma, have proven to be useful models for studying synaptic assembly and elementary forms of learning. Simple nervous system, cellular accessibility, and genetic simplicity are some examples of the invertebrate advantages that allowed to improve our knowledge about evolutionary neuronal conserved mechanisms. In this paper, we present an overview of progresses that elucidates cellular and molecular mechanisms underlying synaptogenesis and synapse plasticity in invertebrate varicosities and their validation in vertebrates. In particular, the role of invertebrate synapsin in the formation of presynaptic terminals and the cell-to-cell interactions that induce specific structural and functional changes in their respective targets will be analyzed

    Heptad stereotypy, S/Q layering, and remote origin of the SARS-CoV-2 fusion core

    Get PDF
    The fusion of the SARS-CoV-2 virus with cells, a key event in the pathogenesis of Covid-19, depends on the assembly of a six-helix fusion core (FC) formed by portions of the spike protein heptad repeats (HRs) 1 and 2. Despite the critical role in regulating infectivity, its distinctive features, origin, and evolution are scarcely understood. Thus, we undertook a structure-guided positional and compositional analysis of the SARS-CoV-2 FC, in comparison with FCs of related viruses, tracing its origin and ongoing evolution. We found that clustered amino acid substitutions within HR1, distinguishing SARS-CoV-2 from SARS-CoV-1, enhance local heptad stereotypy and increase sharply the FC serine-to-glutamine (S/Q) ratio, determining a neat alternate layering of S-rich and Q-rich subdomains along the post-fusion structure. Strikingly, SARS-CoV-2 ranks among viruses with the highest FC S/Q ratio, together with highly syncytiogenic respiratory pathogens (RSV, NDV), whereas MERS-Cov, HIV, and Ebola viruses display low ratios, and this feature reflects onto S/Q segregation and H-bonding patterns. Our evolutionary analyses revealed that the SARS-CoV-2 FC occurs in other SARS-CoV-1-like Sarbecoviruses identified since 2005 in Hong Kong and adjacent regions, tracing its origin to >50 years ago with a recombination-driven spread. Finally, current mutational trends show that the FC is varying especially in the FC1 evolutionary hotspot. These findings establish a novel analytical framework illuminating the sequence/structure evolution of the SARS-CoV-2 FC, tracing its long history within Sarbecoviruses, and may help rationalize the evolution of the fusion machinery in emerging pathogens and the design of novel therapeutic fusion inhibitors

    Enhancement of Memory-Related Long-Term Facilitation by ApAF, a Novel Transcription Factor that Acts Downstream from Both CREB1 and CREB2

    Get PDF
    AbstractThe memory for sensitization of the gill withdrawal reflex in Aplysia is reflected in facilitation of the monosynaptic connection between the sensory and motor neurons of the reflex. The switch from short- to long-term facilitation requires activation of CREB1, derepression of ApCREB2, and induction of ApC/EBP. In search for genes that act downstream from CREB1, we have identified a transcription activator, ApAF, which is stimulated by protein kinase A and can dimerize with both ApC/EBP and ApCREB2. ApAF is necessary for long-term facilitation induced by five pulses of serotonin, by activation of CREB1, or by derepression of ApCREB2. Overexpression of ApAF enhances the long-term facilitation further. Thus, ApAF is a candidate memory enhancer gene downstream from both CREB1 and ApCREB2
    corecore