22 research outputs found

    Functionalized Mesoporous Silica as Doxorubicin Carriers and Cytotoxicity Boosters

    No full text
    Mesoporous silica nanoparticles (MSNs) bearing methyl, thiol or glucose groups were synthesized, and their encapsulation and release behaviors for the anticancer drug Doxorubicin (Dox) were investigated in comparison with nonporous homologous materials. The chemical modification of thiol-functional silica with a double bond glucoside was completed for the first time, by green thiol-ene photoaddition. The MSNs were characterized in terms of structure (FT-IR, Raman), morphology (TEM), porosity (nitrogen sorption–desorption) and Zeta potential measurements. The physical interactions responsible for the Dox encapsulation were investigated by analytic methods and MD simulations, and were correlated with the high loading efficiency of MSNs with thiol and glucose groups. High release at pH 5 was observed in most cases, with thiol-MSN exhibiting 98.25% cumulative release in sustained profile. At pH 7.4, the glucose-MSN showed 75.4% cumulative release, while the methyl-MSN exhibited a sustained release trend. The in vitro cytotoxicity was evaluated on NDHF, MeWo and HeLa cell lines by CellTiter-Glo assay, revealing strong cytotoxic effects in all of the loaded silica at low equivalent Dox concentration and selectivity for cancer cells. Atypical applications of each MSN as intravaginal, topical or oral Dox administration route could be proposed

    From Amorphous Silicones to Si-Containing Highly Ordered Polymers: Some Romanian Contributions in the Field

    No full text
    Polydimethylsiloxane (PDMS), in spite of its well-defined helical structure, is an amorphous fluid even at extremely high molecular weights. The cause of this behavior is the high flexibility of the siloxane backbone and the lack of intermolecular interactions attributed to the presence of methyl groups. These make PDMS incompatible with almost any organic or inorganic component leading to phase separation in siloxane-siloxane copolymers containing blocks with polar organic groups and in siloxane-organic copolymers, where dimethylsiloxane segments co-exist with organic ones. Self-assembly at the micro- or nanometric scale is common in certain mixed structures, including micelles, vesicles, et cetera, manifesting reversibly in response to an external stimulus. Polymers with a very high degree of ordering in the form of high-quality crystals were obtained when siloxane/silane segments co-exist with coordinated metal blocks in the polymer chain. While in the case of coordination of secondary building units (SBUs) with siloxane ligands 1D chains are formed; when coordination is achieved in the presence of a mixture of ligands, siloxane and organic, 2D structures are formed in most cases. The Romanian research group’s results regarding these aspects are reviewed: from the synthesis of classic, amorphous silicone products, to their adaptation for use in emerging fields and to new self-assembled or highly ordered structures with properties that create perspectives for the use of silicones in hitherto unexpected areas

    MWCNTs Composites-Based on New Chemically Modified Polysulfone Matrix for Biomedical Applications

    No full text
    Polyvinyl alcohol (PVA) is a non-toxic biosynthetic polymer. Due to the hydrophilic properties of the PVA, its utilization is an easy tool to modify the properties of materials inducing increased hydrophilicity, which can be noticed in the surface properties of the materials, such as wettability. Based on this motivation, we proposed to obtain high-performance composite materials by a facile synthetic method that involves the cross-linking process of polyvinyl alcohol (PVA) with and aldehyde-functionalized polysulfone(mPSF) precursor, prior to incorporation of modified MWCNTs with hydrophilic groups, thus ensuring a high compatibility between the polymeric and the filler components. Materials prepared in this way have been compared with those based on polyvinyl alcohol and same fillers (mMWCNTs) in order to establish the influence of the polymeric matrix on the composites properties. The amount of mMWCNTs varied in both polymeric matrices between 0.5 and 5 wt%. Fourier transformed infrared with attenuated total reflectance spectroscopy (FTIR-ATR) was employed to confirm the changes noted in the PVA, mPSF and their composites. Hemolysis degree was investigated in correlation with the material structural features. Homogenous distribution of mMWCNTs in all the composite materials has been confirmed by scanning electron microscopy. The hydrophilicity of both composite systems, estimated by the contact angle method, was influenced by the presence of the filler amount mMWCNTs in both matrices (PVA and mPSF). Our work demonstrates that mPSF/mMWCNTs and PVA/mMWCNTs composite could be used as water purification or blood-filtration materials

    X-ray Structure Elucidation of a Pt-Metalloporphyrin and Its Application for Obtaining Sensitive AuNPs-Plasmonic Hybrids Capable of Detecting Triiodide Anions

    No full text
    The development of UV⁻vis spectrophotometric methods based on metalloporphyrins for fast, highly sensitive and selective anion detection, which avoids several of the practical challenges associated with other detection methods, is of tremendous importance in analytical chemistry. In this study, we focused on achieving a selective optical sensor for triiodide ion detection in traces based on a novel hybrid material comprised of Pt(II) 5,10,15,20-tetra(4-methoxy-phenyl)-porphyrin (PtTMeOPP) and gold nanoparticles (AuNPs). This sensor has high relevance in medical physiological tests. The structure of PtTMeOPP was investigated by single crystal X-ray diffraction in order to understand the metal surroundings and the molecule conformation and to assess if it qualifies as a potential sensitive material. It was proven that the Pt-porphyrin generated 1D H-bond supramolecular chains due to the weak C-H···O intermolecular hydrogen bonding. The presence of ordered voids in the crystal encouraged us to use PtTMeOPP as the sensing material for triiodide ion and to enhance its potential in a novel AuNPs/PtTMeOPP hybrid by the synergistic effects provided by the plasmonic gold nanoparticles. The spectrophotometric sensor is characterized by a detection limit of 1.5 × 10−9 M triiodide ion concentration and a remarkable confidence coefficient of 99.98%

    Biocompatible Self-Assembled Hydrogen-Bonded Gels Based on Natural Deep Eutectic Solvents and Hydroxypropyl Cellulose with Strong Antimicrobial Activity

    No full text
    Natural deep eutectic solvents (NADES)-hydroxypropyl cellulose (HPC) self-assembled gels with potential for pharmaceutical applications are prepared. FT-IR, 1HNMR, DSC, TGA and rheology measurements revealed that hydrogen bond acceptor–hydrogen bond donor interactions, concentration of NADES and the water content influence significantly the physico-chemical characteristics of the studied gel systems. HPC-NADES gel compositions have thermal stabilities lower than HPC and higher than NADES components. Thermal transitions reveal multiple glass transitions characteristic of phase separated systems. Flow curves evidence shear thinning (pseudoplastic) behavior. The flow curve shear stress vs. shear rate were assessed by applying Bingham, Herschel–Bulkley, Vocadlo and Casson rheological models. The proposed correlations are in good agreement with experimental data. The studied gels evidence thermothickening behavior due to characteristic LCST (lower critical solution temperature) behavior of HPC in aqueous systems and a good biocompatibility with normal cells (human gingival fibroblasts). The order of antibacterial and antifungal activities (S.aureus, E.coli, P. aeruginosa and C. albicans) is as follows: citric acid >lactic acid > urea > glycerol, revealing the higher antibacterial and antifungal activities of acids

    Mucoadhesive and Antimicrobial Allantoin/ÎČ Cyclodextrins-Loaded Carbopol Gels as Scaffolds for Regenerative Medicine

    No full text
    Allantoin and its ÎČ-cyclodextrin and hydroxypropyl-ÎČ-cyclodextrin inclusion complexes 1:1 have been used to prepare carbopol-based mucoadhesive gels. The gelation process occurred by adjustment with glycerol 10% in the presence of triethanolamine. The structural features induced by the presence of allantoin and the corresponding ÎČ-cyclodextrins inclusion complexes have been first investigated by infrared spectroscopy highlighting strong interactions within the gels network and ideal crosslinks for the self-healing behavior. The hydrophilicity of the gels was investigated by the determination of the surface tension parameters and the free energy of hydration. The interfacial free energy values indicated prolonged biocompatibility with blood. The gels-water molecule interactions in terms of sorption, permeability, and diffusion coefficients were evaluated by dynamic vapor sorption analysis. The self-assembly process through intermolecular H-bonding, the high hydrophilicity, the mechanical performance, the hydrolytic stability in simulated biological media, the biocompatibility with normal human dermal fibroblast (NHDF) cells, the mucoadhesivity and antimicrobial activity on selected microorganism species (S. Aureus and C. albicans) of the allantoin-based gels recommend them as promising scaffold alternatives in regenerative medicine
    corecore