82 research outputs found

    Latest MAGIC discoveries pushing redshift boundaries in VHE astrophysics

    Get PDF
    The search for detection of ?-rays from distant AGNs by Imaging Atmospheric Cherenkov Telescopes (IACTs) is challenging at high redshifts, not only because of lower flux due to the distance of the source, but also due to the consequent absorption of gamma-rays by the extragalactic background light (EBL). Before the MAGIC discoveries reported in this work, the farthest source ever detected in the VHE domain was the blazar PKS 1424+240, at z > 0.6. MAGIC, a system of two 17 m of diameter IACTs located in the Canary island of La Palma, has been able to go beyond that limit and push the boundaries for VHE detection to redshifts z similar to 1. The two sources detected and analyzed, the blazar QSO B0218+357 and the FSRQ PKS 1441+25 are located at redshift z = 0.944 and z = 0.939 respectively. QSO B0218+357 is also the first gravitational lensed blazar ever detected in VHE. The activity, triggered by Fermi-LAT in high energy ?-rays, was followed up by other instruments, such as the KVA telescope in the optical band and the Swift-XRT in X-rays. In the present work we show results on MAGIC analysis on QSO B0218+357 and PKS 1441+25 together with multiwavelength lightcurves. The collected dataset allowed us to test for the first time the present generation of EBL models at such distances

    Fotometría absoluta y brillo de fondo de cielo con AstMon-UCM

    Get PDF
    Las imágenes de todo el cielo han demostrado ser una potente herramienta para determinar la calidad astronómica del cielo, y su uso se está extendiendo hoy en día tanto ubicaciones de futuros observatorios como en los ya existentes. El observatorio astronómico de la Universidad Complutense de Madrid (Observatorio UCM) es un observatorio urbano situado en el Campus Universitario que constituye un excepcional laboratorio para estudiar efectos de la actividad humana como la contaminación lumínica, la contaminación del aire y la concentración de aerosoles en la calidad astronómica del cielo. Para estudiar estos efectos, instalamos hace dos años el monitor astronómico AstMon-UCM. Durante el pasado año hemos desarrollado un paquete de programas de código abierto para automatizar el análisis de las imágenes de cámaras de todo el cielo, caracterizando la calidad del cielo para observaciones astronómicas a través de parámetros como el Brillo de Fondo de Cielo o la Extinción Atmosférica. Este paquete se ha aplicado tanto en imágenes de AstMon-UCM como de otros monitores de todo el cielo y cámaras digitales equipadas con objetivos ojo de pez, comparando los resultados obtenidos con datos provenientes de fotómetros SQM. Estas herramientas abren la puerta a numerosas y excitantes posibilidades.[ABSTRACT] All-Sky images have proven to be a powerful tool for determining the astronomical sky quality, nowadays their use is spreading both for planned and existing observatories. The Universidad Complutense de Madrid’s astronomical observatory (Observatorio UCM) is an urban observatory located at Campus of the University. It provides an excepcional laboratory to study the effects of human activity such as light pollution, air pollutants and aerosol concentration in the astronomical quality of the sky. In order to study these effects, we set up two years ago the all-sky monitor AstMon-UCM. During the last year we have been developing an open-source software package to automate the analysis of all-sky cameras images. It characterizes sky quality for astronomical observations through parameters like Sky Brightness and Atmospheric Extinction. We have applied it to images from the AstMon-UCM, other all-sky monitors and common digital cameras equipped with fisheye lenses. Results have been compared with data derived from SQM photometers. These tools open the door to several exciting possibilities

    Measurement of the EBL through a combined likelihood analysis of gamma-ray observations of blazars with the MAGIC telescopes

    Full text link
    The extragalactic background light (EBL) is the radiation accumulated through the history of the Universe in the wavelength range from the ultraviolet to the far infrared. Local foregrounds make the direct measurement of the diffuse EBL notoriously difficult, while robust lower limits have been obtained by adding up the contributions of all the discrete sources resolved in deep infrared and optical galaxy observations. Gamma-ray astronomy has emerged in the past few years as a powerful tool for the study of the EBL: very-high-energy (VHE) photons traversing cosmological distances can interact with EBL photons to produce e+^+e^- pairs, resulting in an energy-dependent depletion of the gamma-ray flux of distant sources that can be used to set constraints on the EBL density. The study of the EBL is one of the key scientific programs currently carried out by the MAGIC collaboration. We present here the results of the analysis of 32 VHE spectra of 12 blazars in the redshift range 0.03 - 0.94, obtained with over 300 hours of observations with the MAGIC telescopes between 2010 and 2016. A combined likelihood maximization approach is used to evaluate the density and spectrum of the EBL most consistent with the MAGIC observations. The results are compatible with state-of-the-art EBL models, and constrain the EBL density to be roughly within 20%\simeq 20\% of the nominal value in such models. The study reveals no anomalies in gamma-ray propagation in the large optical depth regime - contrary to some claims based on meta-analyses of published VHE spectra.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Bexco, Busan, Korea (arXiv:1708.05153

    Statistics of VHE γ-rays in temporal association with radio giant pulses from the Crab pulsar

    Get PDF
    Aims. The aim of this study is to search for evidence of a common emission engine between radio giant pulses (GPs) and very-high-energy (VHE, E& x2004;> & x2004;100 GeV) gamma-rays from the Crab pulsar. Methods. We performed 16 h of simultaneous observations of the Crab pulsar at 1.4 GHz with the Effelsberg radio telescope and the Westerbork Synthesis Radio Telescope (WSRT), and at energies above 60 GeV we used the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes. We searched for a statistical correlation between the radio and VHE gamma-ray emission with search windows of different lengths and different time lags to the arrival times of a radio GP. A dedicated search for an enhancement in the number of VHE gamma-rays correlated with the occurrence of radio GPs was carried out separately for the P1 and P2 phase ranges, respectively. Results. In the radio data sample, 99444 radio GPs were detected. We find no significant correlation between the GPs and VHE photons in any of the search windows. Depending on phase cuts and the chosen search windows, we find upper limits at a 95% confidence level on an increase in VHE gamma-ray events correlated with radio GPs between 7% and 61% of the average Crab pulsar VHE flux for the P1 and P2 phase ranges, respectively. This puts upper limits on the flux increase during a radio GP between 12% and 2900% of the pulsed VHE flux, depending on the search window duration and phase cuts. This is the most stringent upper limit on a correlation between gamma-ray emission and radio GPs reported so far

    Observations of Sagittarius A* during the pericenter passage of the G2 object with MAGIC

    Get PDF
    Context. We present the results of a multi-year monitoring campaign of the Galactic center (GC) with the MAGIC telescopes. These observations were primarily motivated by reports that a putative gas cloud (G2) would be passing in close proximity to the super-massive black hole (SMBH), associated with Sagittarius A*, located at the center of our galaxy. This event was expected to give astronomers a unique chance to study the effect of in-falling matter on the broad-band emission of a SMBH. Aims. We search for potential flaring emission of very-high-energy (VHE; >= 100 GeV) gamma rays from the direction of the SMBH at the GC due to the passage of the G2 object. Using these data we also study the morphology of this complex region. Methods. We observed the GC region with the MAGIC Imaging Atmospheric Cherenkov Telescopes during the period 2012-2015, collecting 67 h of good-quality data. In addition to a search for variability in the flux and spectral shape of the GC gamma-ray source, we use a point-source subtraction technique to remove the known gamma-ray emitters located around the GC in order to reveal the TeV morphology of the extended emission inside that region. Results. No effect of the G2 object on the VHE gamma-ray emission from the GC was detected during the 4 yr observation campaign. We confirm previous measurements of the VHE spectrum of Sagittarius A*, and do not detect any significant variability of the emission from the source. Furthermore, the known VHE gamma-ray emitter at the location of the supernova remnant G0.9+0.1 was detected, as well as the recently discovered VHE source close to the GG radio arc

    Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube

    Get PDF
    We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e. g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015

    Performance of the MAGIC telescopes under moonlight

    Get PDF
    MAGIC, a system of two imaging atmospheric Cherenkov telescopes, achieves its best performance under dark conditions, i.e. in absence of moonlight or twilight. Since operating the telescopes only during dark time would severely limit the duty cycle, observations are also performed when the Moon is present in the sky. Here we develop a dedicated Moon-adapted analysis to characterize the performance of MAGIC under moonlight. We evaluate energy threshold, angular resolution and sensitivity of MAGIC under different background light levels, based on Crab Nebula observations and tuned Monte Carlo simulations. This study includes observations taken under non-standard hardware configurations, such as reducing the camera photomultiplier tubes gain by a factor ∼1.7 (reduced HV settings) with respect to standard settings (nominal HV) or using UV-pass filters to strongly reduce the amount of moonlight reaching the cameras of the telescopes. The Crab Nebula spectrum is correctly reconstructed in all the studied illumination levels, that reach up to 30 times brighter than under dark conditions. The main effect of moonlight is an increase in the analysis energy threshold and in the systematic uncertainties on the flux normalization. The sensitivity degradation is constrained to be below 10%, within 15-30% and between 60 and 80% for nominal HV, reduced HV and UV-pass filter observations, respectively. No worsening of the angular resolution was found. Thanks to observations during moonlight, the maximal duty cycle of MAGIC can be increased from ∼18%, under dark nights only, to up to∼40% in total with only moderate performance degradation
    corecore