2 research outputs found

    An electrophysiological investigation of power-amplification in the ballistic mantis shrimp punch

    Get PDF
    Author Posting. © Faculty for Undergraduate Neuroscience, 2019. This article is posted here by permission of Faculty for Undergraduate Neuroscience for personal use, not for redistribution. The definitive version was published in Journal of Undergraduate Neuroscience Education 17(1), (2019): T12-T19.Mantis shrimp are aggressive, burrowing crustaceans that hunt using one the fastest movements in the natural world. These stomatopods can crack the calcified shells of prey or spear down unsuspecting fish with lighting speed. Their strike makes use of power-amplification mechanisms to move their limbs much faster than is possible by muscles alone. Other arthropods such as crickets and grasshoppers also use power-amplified kicks that allow these animals to rapidly jump away from predator threats. Here we present a template laboratory exercise for studying the electrophysiology of power-amplified limb movement in arthropods, with a specific focus on mantis shrimp strikes. The exercise is designed in such a way that it can be applied to other species that perform power-amplified limb movements (e.g., house crickets, Acheta domesticus) and species that do not (e.g., cockroaches, Blaberus discoidalis). Students learn to handle the animals, make and implant electromyogram (EMG) probes, and finally perform experiments. This integrative approach introduces the concept of power-amplified neuromuscular control; allows students to develop scientific methods, and conveys high-level insights into behavior, and convergent evolution, the process by which different species evolve similar traits.Author GJG declares a commercial interest in the SpikerBox used here as a co-owner in Backyard Brains. Authors ES and SM are employed by Backyard Brains. DJP and GJG were supported by a National Institute of Mental Health (NIMH) Small Business Innovative Research (SBIR) award #R44MH093334. Author KDF is funded by European Commission Marie Sklodowska-Curie Independent Postdoctoral Research Fellowship and the Grass Foundation

    Grasshopper DCMD : an undergraduate electrophysiology lab for investigating single-unit responses to behaviorally-relevant stimuli

    Get PDF
    Author Posting. © Faculty for Undergraduate Neuroscience, 2017. This article is posted here by permission of Faculty for Undergraduate Neuroscience for personal use, not for redistribution. The definitive version was published in Journal of Undergraduate Neuroscience Education 15 (2017): A162-A173.Avoiding capture from a fast-approaching predator is an important survival skill shared by many animals. Investigating the neural circuits that give rise to this escape behavior can provide a tractable demonstration of systems-level neuroscience research for undergraduate laboratories. In this paper, we describe three related hands-on exercises using the grasshopper and affordable technology to bring neurophysiology, neuroethology, and neural computation to life and enhance student understanding and interest. We simplified a looming stimuli procedure using the Backyard Brains SpikerBox bioamplifier, an open-source and low-cost electrophysiology rig, to extracellularly record activity of the descending contralateral movement detector (DCMD) neuron from the grasshopper’s neck. The DCMD activity underlies the grasshopper's motor responses to looming monocular visual cues and can easily be recorded and analyzed on an open-source iOS oscilloscope app, Spike Recorder. Visual stimuli are presented to the grasshopper by this same mobile application allowing for synchronized recording of stimuli and neural activity. An in-app spike-sorting algorithm is described that allows a quick way for students to record, sort, and analyze their data at the bench. We also describe a way for students to export these data to other analysis tools. With the protocol described, students will be able to prepare the grasshopper, find and record from the DCMD neuron, and visualize the DCMD responses to quantitatively investigate the escape system by adjusting the speed and size of simulated approaching objects. We describe the results from 22 grasshoppers, where 50 of the 57 recording sessions (87.7%) had a reliable DCMD response. Finally, we field-tested our experiment in an undergraduate neuroscience laboratory and found that a majority of students (67%) could perform this exercise in one two-hour lab setting, and had an increase in interest for studying the neural systems that drive behavior.Funding for this project was supported by the National Institute of Mental Health Small Business Innovation Research grant #2R44MH093334: “Backyard Brains: Bringing Neurophysiology into Secondary Schools.
    corecore