2 research outputs found

    Outcome of Simian-Human Immunodeficiency Virus Strain 89.6p Challenge following Vaccination of Rhesus Macaques with Human Immunodeficiency Virus Tat Protein

    No full text
    The regulatory proteins Nef, Rev, and Tat of human immunodeficiency virus type 1 (HIV-1) are attractive targets for vaccine development, since induction of effective immune responses targeting these early proteins may best control virus replication. Here we investigated whether vaccination with biologically active Tat or inactive Tat toxoid derived from HIV-1(IIIB) and simian-human immunodeficiency virus (SHIV) strain 89.6p would induce protective immunity in rhesus macaques. Vaccination induced high titers of anti-Tat immunoglobulin G in all immunized animals by week 7, but titers were somewhat lower in the 89.6p Tat group. Dominant B-cell epitopes mapped to the amino terminus, the basic domain, and the carboxy-terminal region. Tat-specific T-helper responses were detected in 50% of immunized animals. T-cell epitopes appeared to map within amino acids (aa) 1 to 24 and aa 37 to 66. In addition, Tat-specific gamma interferon responses were detected in CD4(+) and/or CD8(+) T lymphocytes in 11 of 16 immunized animals on the day of challenge. However, all animals became infected upon intravenous challenge with 30 50% minimal infective doses of SHIV 89.6p, and there were no significant differences in viral loads or CD4(+) T-cell counts between immunized and control animals. Thus, vaccination with HIV-1(IIIB) or SHIV 89.6p Tat or with Tat toxoid preparations failed to confer protection against SHIV 89.6p infection despite robust Tat-specific humoral and cellular immune responses in some animals. Given its apparent immunogenicity, Tat may be more effective as a component of a cocktail vaccine in combination with other regulatory and/or structural proteins of HIV-1

    ORFDB: an information resource linking scientific content to a high-quality Open Reading Frame (ORF) collection

    No full text
    The ORFDB (http://orf.invitrogen.com/) represents an ongoing effort at Invitrogen Corporation to integrate relevant scientific data with an evolving collection of human and mouse Open Reading Frame (ORF) clones (Ultimateā„¢ ORF Clones). The ORFDB serves as a central data warehouse enabling researchers to search the ORF collection through its web portal ORFBrowser, allowing researchers to find the Ultimateā„¢ ORF clones by blast, keyword, GenBank accession, gene symbol, clone ID, Unigene ID, LocusLink ID or through functional relationships by browsing the collection via the Gene Ontology (GO) Browser. As of October 2003, the ORFDB contains 6200 human and 2870 mouse Ultimateā„¢ ORF clones. All Ultimateā„¢ ORF clones have been fully sequenced with high quality, and are matched to public reference protein sequences. In addition, the cloned ORFs have been extensively annotated across six categories: Gene, ORF, Clone Format, Protein, SNP and Genomic links, with the information assembled in a format termed the ORFCard. The ORFCard represents an information repository that documents the sequence quality, alignment with respect to public protein sequences, and the latest publicly available information associated with each human and mouse gene represented in the collection
    corecore