33 research outputs found

    Pea Seedling Histaminase as a Novel Therapeutic Approach to Anaphylactic and Inflammatory Disorders

    Get PDF
    Amine oxidases (AOs) are ubiquitous enzymes involved in the metabolism of biogenic amines. Copper AOs (Cu-AOs) catalyze the oxidative deamination of primary amine groups of several biogenic amines, such as putrescine, cadaverine, and histamine. In the present review, the effects of a plant amine oxidase (Cu-AO, histaminase, EC1.4.3.6) purified from pea seedlings in the modulation of IgE-mediated allergic reactions, and in the prevention of cardiac and splachnic postischemic reperfusion damage are reported

    P19-derived neuronal cells express H1, H2, and H3 histamine receptors: a biopharmaceutical approach to evaluate antihistamine agents

    Get PDF
    Histamine is a biogenic amine implicated in various biological and pathological processes. Convenient cellular models are needed to screen and develop new antihistamine agents. This report aimed to characterize the response of neurons differentiated from mouse P19 embryonal carcinoma cells to histamine treatment, and to investigate the modulation of this response by antihistamine drugs, vegetal diamine oxidase, and catalase. The exposure of P19 neurons to histamine reduced cell viability to 65% maximally. This effect involves specific histamine receptors, since it was prevented by treatment with desloratadine and cimetidine, respectively, H-1 and H-2 antagonists, but not by the H-3 antagonist ciproxifan. RT-PCR analysis showed that P19 neurons express H-1 and H-2 receptors, and the H-3 receptor, although it seemed not involved in the histamine effect on these cells. The H-4 receptor was not expressed. H-1 and H-2 antagonists as well as vegetal diamine oxidase diminished the intracellular Ca2+ mobilization triggered by histamine. The treatment with vegetal diamine oxidase or catalase protected against mortality and a significant reduction of H2O2 level, generated from the cells under the histamine action, was found upon treatments with desloratadine, cimetidine, vegetal diamine oxidase, or catalase. Overall, the results indicate the expression of functional histamine receptors and open the possibility of using P19 neurons as model system to study the roles of histamine and related drugs in neuronal pathogenesis. This model is less expensive to operate and can be easily implemented by current laboratories of analysis and by Contract Research Organizations

    Zymographic assay of plant diamine oxidase on entrapped peroxidase polyacrylamide gel electrophoresis. A study of stability to proteolysis

    Get PDF
    A zymographic assay of diamine oxidase (DAO, histaminase, EC 1.4.3.6), based on a coupled peroxidase reaction, and its behavior at proteolysis in simulated gastric and intestinal conditions, are described. The DAO activity from a vegetal extract of Lathyrus sativus seedlings was directly determined on sodium dodecyl sulfate polyacrylamide electrophoretic gels containing entrapped horseradish peroxidase, with putrescine as substrate of histaminase and ortho-phenylenediamine as co-substrate of peroxidase. The accumulation of azo-aniline, as peroxidase-catalyzed oxidation product, led to well-defined yellow-brown bands on gels, with intensities corresponding to the enzymatic activity of DAO. After image analysis of gels, a linear dependency of DAO content (Coomassie-stained protein bands) and of its enzymatic activity (zymographic bands) with the concentration of the vegetal extract was obtained. In simulated gastric conditions (pH 1.2, 37 °C), the DAO from the vegetal extract lost its enzymatic activity before 15 min of incubation, either in the presence or absence of pepsin. The protein pattern (Coomassie-stained) revealed that the DAO content from the vegetal extract was kept almost constant in the simulated intestinal fluid (containing pancreatin or not), with a slight diminution in the presence of pancreatic proteases. After 10 h of incubation at 37 °C, the DAO enzymatic activity from the vegetal extract was 44.7% in media without pancreatin and 13.6% in the presence of pancreatin, whereas the purified DAO retained only 4.65% of its initial enzymatic activity in the presence of pancreatin

    Enhanced Stability of Vegetal Diamine Oxidase with Trehalose and Sucrose as Cryoprotectants: Mechanistic Insights

    No full text
    Enteric dysfunctions are common for various histamine-related intestinal disorders. Vegetal diamine oxidase (vDAO), an enzyme able to decompose histamine and thus alleviate histamine-related dysfunctions, was formulated in gastro-resistant tablet forms for oral administration as a food supplement and possible therapeutic agent. A major challenge for the use of proteins in the pharmaceutical field is their poor stability. In this study, vDAO was freeze-dried in the absence or in the presence of sucrose or trehalose as cryoprotectants and then formulated as tablets by direct compression. The stability of the obtained preparations was followed during storage at 4 °C and −20 °C for 18 months. In vitro dissolution tests with the vDAO powders formulated as tablets were performed in simulated gastric and in simulated intestinal fluids. The tablets obtained with the powder of the vDAO lyophilized with sucrose or trehalose cryoprotectants offered better protection for enzyme activity. Furthermore, the release of the vDAO lyophilized with the cryoprotectants was around 80% of the total loaded activity (enzyme units) compared to 20% for the control (vDAO powder prepared without cryoprotectants). This report revealed the potential of sucrose and trehalose as cryoprotectants to protect vDAO from freeze-drying stress and during storage, and also to markedly improve the vDAO release performance of tablets obtained with vDAO powders

    Enhanced Stability of Vegetal Diamine Oxidase with Trehalose and Sucrose as Cryoprotectants: Mechanistic Insights

    No full text
    Enteric dysfunctions are common for various histamine-related intestinal disorders. Vegetal diamine oxidase (vDAO), an enzyme able to decompose histamine and thus alleviate histamine-related dysfunctions, was formulated in gastro-resistant tablet forms for oral administration as a food supplement and possible therapeutic agent. A major challenge for the use of proteins in the pharmaceutical field is their poor stability. In this study, vDAO was freeze-dried in the absence or in the presence of sucrose or trehalose as cryoprotectants and then formulated as tablets by direct compression. The stability of the obtained preparations was followed during storage at 4 °C and −20 °C for 18 months. In vitro dissolution tests with the vDAO powders formulated as tablets were performed in simulated gastric and in simulated intestinal fluids. The tablets obtained with the powder of the vDAO lyophilized with sucrose or trehalose cryoprotectants offered better protection for enzyme activity. Furthermore, the release of the vDAO lyophilized with the cryoprotectants was around 80% of the total loaded activity (enzyme units) compared to 20% for the control (vDAO powder prepared without cryoprotectants). This report revealed the potential of sucrose and trehalose as cryoprotectants to protect vDAO from freeze-drying stress and during storage, and also to markedly improve the vDAO release performance of tablets obtained with vDAO powders

    Extended substrate specificity of serum amine oxidase: Possible involvement in protein posttranslational modification

    No full text
    The capacity of bovine serum amineoxidase (SAG) to oxidize free amino groups of nonconventional substrates, such as polylysine (up to 50 kDa) and some proteins as lysozyme and ribonuclease A, is described. The oxidation was quantified from the amount of H2O2 and NH3 enzymatically produced by SAG. Kinetic analysis indicated a stereospecific preference for L-configuration. Maximal oxidation rate was obtained with poly-L-lysine (9.6 kDa). After 10 h of incubation at 37 degrees C, the poly-l-lysine was partially oxidized generating 1.5 moles of H2O2 by one mole of polylysine. Denatured SAO presented very low oxidation rates with the mentioned substrates. (C) 1996 Academic Press, Inc
    corecore