7 research outputs found

    Dissimilar Laser Welding of AISI 321 and AISI 1010

    Get PDF
    This paper presents the dissimilar laser welding of AISI 321 stainless steel and AISI 1010 carbon steel thin sheets in butt joint geometry using a 1 kW diode laser. Influence of the welding speed on the geometry and microstructure of the joints is discussed. Structural characterisation of the welds is realised through optical, electron microscopy and EDS analysis, observing distinct mixed and unmixed areas in the weld bead because of the high cooling rate. The weld bead presents an austenitic-martensitic-ferrite structure, characterized by austenitic twin grains with ferrite particles precipitated on grain boundaries, and islands comprising a ferrite-martensite structure. Chromium and nickel migration in the weld bead area was observed. Good tensile behaviour of the dissimilar joints was obtained, as all the specimen failure occurs far-off the weld zone

    Carbon Nanoparticle-Supported Pd Obtained by Solar Physical Vapor Deposition

    No full text
    Palladium supported on carbon nanoparticles has been obtained on a specially designed ceramic catalyst, obtained by thermal spraying on a copper substrate, starting from Pd/C targets. Solar physical vapor deposition in argon, an environment-friendly and energy-efficient alternative to arc or chemical vapor deposition, has been employed as a means of target vaporization at CNRS-PROMES facility in Odeillo, France. The obtained nanoparticles have a spherical-porous morphology with diameters ranging from 50 to 120 nm and specific sorption areas of 50,000 m2/g. The XRD diffractograms indicate the presence of dominatingly crystalline short-range ordered graphene oxide layers, in contrast with the amorphous Pd/C starting precursor. The presence of palladium (0.6% wt.) at the surface of the nanoparticles was proved by the EDX and XRD analyses, making the synthesized material useful in applications such as catalysis or gas sorption

    Geometry Characterization of AISI 430 Stainless Steel Microstructuring Using Laser

    No full text
    Laser-generated surface patterns provide the means for local mechanical interlocking between the joined materials, tunes the wettability of surfaces that come in contact, and generally are the main factor for bonding strength enhancement, especially between dissimilar materials. This paper presents the influence of different patterning overlays generated with a pulsed laser on the surface of stainless-steel sheets. For all experiments, an overlapping degree of 90% has been chosen between three different patterns, while the engraving speed, pulse frequency and number of passes have varied. The textured surfaces’ morphology was assessed through optical microscopy, and the roughness of the surfaces was correlated with the corresponding experimental parameters. The results have indicated promising insights for joining stainless steel to plastic materials, which is otherwise difficult to assess through usual welding techniques

    Functional Surfaces via Laser Processing in Nickel Acetate Solution

    No full text
    This study presents a novel laser processing technique in a liquid media to enhance the surface mechanical properties of a material, by thermal impact and micro-alloying at the subsurface level. An aqueous solution of nickel acetate (15% wt.) was used as liquid media for laser processing of C45E steel. A pulsed laser TRUMPH Truepulse 556 coupled to a PRECITEC 200 mm focal length optical system, manipulated by a robotic arm, was employed for the under-liquid micro-processing. The study’s novelty lies in the diffusion of nickel in the C45E steel samples, resulting from the addition of nickel acetate to the liquid media. Micro-alloying and phase transformation were achieved up to a 30 µm depth from the surface. The laser micro-processed surface morphology was analysed using optical and scanning electron microscopy. Energy dispersive spectroscopy and X-ray diffraction were used to determine the chemical composition and structural development, respectively. The microstructure refinement was observed, along with the development of nickel-rich compounds at the subsurface level, contributing to an improvement of the micro and nanoscale hardness and elastic modulus (230 GPa). The laser-treated surface exhibited an enhancement of microhardness from 250 to 660 HV0.03 and an improvement of more than 50% in corrosion rate

    Morphological Analysis of Laser Surface Texturing Effect on AISI 430 Stainless Steel

    No full text
    Laser surface texturing (LST) is a method to obtain micro-structures on the material’s surface for improving tribological performances, wetting tuning, surface treatment, and increasing adhesion. The material selected for LST is AISI 430 ferritic stainless steel, distinguished by the low cost in manufacturing, corrosion resistance, and high strength at elevated temperature. The present study addresses the morphology of new pattern designs (crater array, ellipse, and octagonal shapes). The patterns are applied on the stainless-steel surface by a non-contact method with high quality and precision nanosecond pulsed laser equipment. The investigation of laser parameter influence on thermal affected area and micro-structures is accomplished by morphological and elemental analysis (SEM + EDX). The parameters of the laser micro-patterning have a marked influence on the morphology, creating groove-type sections with different depths and recast material features. From the SEM characterization, the highest level of recast material is observed for concentric octagon LST design. Its application is more recommended for the preparation of the metal surface before hybrid welding. Additionally, the lack of the oxygen element in the case of this design suggests the possible use of the pattern in hybrid joining
    corecore