18 research outputs found

    Brain transcriptome of gobies inhabiting natural CO2 seeps reveal acclimation strategies to long-term acidification

    Get PDF
    Ocean acidification (OA) is known to affect the physiology, survival, behaviour and fitness of various fish species with repercussions at the population, community and ecosystem levels. Some fish species, however, seem to acclimate rapidly to OA conditions and even thrive in acidified environments. The molecular mechanisms that enable species to successfully inhabit high CO2 environments have not been fully elucidated especially in wild fish populations. Here, we used the natural CO2 seep in Vulcano Island, Italy to study the effects of elevated CO2 exposure on the brain transcriptome of the anemone goby, a species with high population density in the CO2 seep and investigate their potential for acclimation. Compared to fish from environments with ambient CO2, gobies living in the CO2 seep showed differences in the expression of transcripts involved in ion transport and pH homeostasis, cellular stress, immune response, circadian rhythm and metabolism. We also found evidence of potential adaptive mechanisms to restore the functioning of GABAergic pathways, whose activity can be affected by exposure to elevated CO2 levels. Our findings indicate that gobies living in the CO2 seep may be capable of mitigating CO2-induced oxidative stress and maintaining physiological pH while meeting the consequent increased energetic costs. The conspicuous difference in the expression of core circadian rhythm transcripts could provide an adaptive advantage by increasing the flexibility of physiological processes in elevated CO2 conditions thereby facilitating acclimation. Our results show potential molecular processes of acclimation to elevated CO2 in gobies enabling them to thrive in the acidified waters of Vulcano Island

    Fish assemblages cope with ocean acidification in a shallow volcanic CO2 vent benefiting from an adjacent recovery area

    Get PDF
    Shallow CO2 vents are used to test ecological hypotheses about the effects of ocean acidification (OA). Here, we studied fish assemblages associated with Cymodocea nodosa meadows exposed to high pCO2/low pH conditions at a natural CO2 vent in the Mediterranean Sea. Using underwater visual census, we assessed fish community structure and biodiversity in a low pH site (close to the CO2 vent), a close control site and a far control site, hypothesising a decline in biodiversity and a homogenization of fish assemblages under OA conditions. Our findings revealed that fish diversity did not show a unique spatial pattern, or even significant relationships with pH, but correlated with seagrass leaf canopy. Among-site similarity was found in the abundance of juveniles, contrary to the expected impacts of OA on early life stages. However, pH seems an important driver in structuring fish assemblage in the low pH site, despite its high similarity with the close control site. This unexpected pattern may represent a combined response of fish mobility, enhanced food resources in the acidified site, and a ‘recovery area’ effect of the adjacent control site

    Slight differences in community structure and biodiversity of fish associated to a Cymodocea nodosa meadow in a shallow CO2 vent

    No full text
    Naturally acidified environments are used to test ecological hypotheses about the effects of ocean acidification on complex communities. Here, we used a shallow Mediterranean CO2 vent to study the coastal fish assemblages associated to Cymodocea nodosa seagrass meadows, long-term exposed to high pCO2 / low pH conditions. In particular, by using underwater visual census method, we assessed the structure and the biodiversity of fish assemblages living in a low pH site and in two control sites, in two periods of the year featured by dissimilar seagrass structure. The aim of this study was to test the effect of different pH on fish assemblages mediated by the habitat-forming structural species C. nodosa. Contrary to expectations, fish assemblages exposed to acidified conditions did not reveal striking differences, both in the community structure and in biodiversity, compared with both controls. Furthermore, a general higher abundance of small-sized individuals was found in the low pH site. Spatial and temporal patterns indicated that these differences can not be addressed to C. nodosa meadow structure at different pH conditions. Moreover, current findings suggest that fish may exploit the vent area above all for its enhanced food resources, and that detrimental effects of acidification can be overcome by fish mobility, using the closer control area as a ‘recovery zone’. Therefore, although fish may be able to withstand the projected lowering of pH, indirect effects of acidification (i.e. food resources alteration) could exacerbate changes in fish assemblages
    corecore