22 research outputs found
Thermal and chemical treatments of common bean seeds: Efficiency in Curtobacterium flaccumfaciens pv. flaccumfaciens eradication and effects on the physiological quality of seeds
Foram testados o efeito da termo e quimioterapia na erradicação de Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff) e sobre a qualidade fisiológica de sementes de feijoeiro (Phaseolus vulgaris) cv. Pérola. Os tempos (30 min, 1 e 2 h)
de embebição em água e em soluções de AGRIMAICIN 500 (sulfato de cobre, 500 g + oxitetraciclina, 30 g/kg do produto)
nas concentrações de 5 e 10 g/L de água; o calor seco (60 e 70 ºC por 1, 2, 3, 6 e 12 h); e calor a 60 ºC/3 h em sementes
previamente embebidas em água por 30 min, 1 e 2 h foram aplicados. Sementes embebidas em água por mais de 1 h tiveram
o vigor afetado. Embebição das sementes (30 min, 1 e 2 h) em solução com 10 g de AGRIMAICIN 500/L de água afetou
o comprimento das radículas e dos caulículos, enquanto que a germinação só foi afetada com 2 h. O tratamento eliminou a
bactéria de sementes naturalmente infectadas, no entanto, em sementes inoculadas (108 ufc/mL) o tratamento não foi efetivo.
Exposição ao calor seco (60 e 70 ºC) por mais de 3 h reduziu significativamente o vigor das sementes, mas não eliminou a
bactéria. Embebição das sementes em água por 30 min e 1 h + 60 ºC/3 h afetou o comprimento dos caulículos e das radículas,
mas não eliminou a bactéria. Embebição das sementes por duas horas em água + 60 ºC/3 h reduziu significativamente a
germinação e o vigor; reduziu, ainda, significativamente o número de células de Cff em sementes inoculadas e eliminou a
bactéria em sementes naturalmente infectadas. _________________________________________________________________________________ ABSTRACTThe effect of thermo and chemotherapy on the eradication of Curtobacterium flaccumfaciens pv. flaccumfaciens
(Cff) and on the physiological quality of seeds of common bean (Phaseolus vulgaris) cv. Pérola were tested. Soaking times
(30 min, 1 and 2 h) in water and in AGRIMAICIN 500 solutions (copper sulphate, 500 g + oxytetracyclin, 30 g/kg of the
product) in concentrations of 5 and 10 g/L of water; dry heat (60 and 70 ºC for 1, 2, 3, 6 and 12 h); and heat of 60 ºC/3 h
on previously soaked seeds for 30 min, 1 and 2 h were tested. The vigor of seeds soaked in water for more than 1 h was
affected. Soaking the seeds (30 min, 1 and 2 h) in solution with 10 g of AGRIMAICIN 500/L of water affected the length
of the rootlet and the stem, whereas germination was affected only with 2 h. The treatment eliminated the bacterium from
naturally infected seeds; however it was not effective in inoculated seeds (108 ufc/mL). Dry heat (60 and 70 ºC) for more
than 3 h reduced significantly the vigor of the seeds and did not eliminate the bacterium. Soaking the seeds for 30 min and 1
h + 60 ºC/3 h affected the length of the stem and rootlet but did not eliminate the bacterium. Two hours of soaking the seeds
in water ± 60 ºC/3 h reduced significantly the germination and the vigor; it also reduced significantly the Cff in inoculated
seeds, whereas it eliminated the bacterium in naturally infected ones
Atlas dos assentamentos rurais do Norte do Mato Grosso
Prefácio - O Atlas dos assentamentos da região norte do estado do Mato Grosso é o resultado de estudos e ações conjuntas
realizados por meio da parceria estabelecida entre o Instituto Nacional de Colonização e Reforma Agrária (Incra) e a
Universidade de Brasília (UnB) – Faculdade UnB Planaltina (FUP), no âmbito do Projeto Regularização Ambiental e Diagnóstico dos Sistemas Agrários dos Assentamentos da Região Norte do Estado do Mato Grosso (Radis-MT). O Projeto Radis-MT, nasceu da necessidade da regularização ambiental das propriedades rurais, prevista na Lei nº 12.651, de 25 de maio de 2012, que dispõe sobre a proteção da vegetação nativa. Desde sua concepção, o projeto propõe uma abordagem participativa
e busca inovar, associando o uso de tecnologias que permitem uma visão ampla do território, a fim de promover a regularização
ambiental a partir do olhar sobre os sistemas produtivos. Neste contexto, o Radis integra a pesquisa acadêmica aplicada e a assistência técnica para alcançar os melhores resultados no atendimento às famílias assentadas.
O Radis atua em 41 municípios do norte do estado do Mato Grosso, contemplando 111 assentamentos, onde residem 27.573 famílias, em uma área total de aproximadamente 1.09 milhões de hectares. Destes, 97 assentamentos estão localizados nas bacias dos rios Juruena e Teles Pires e 14 assentamentos na bacia do rio Xingu.
Nesta publicação, são apresentados os resultados da primeira fase do projeto, na qual foram analisados 32 assentamentos, localizados em sete municípios do Mato Grosso. Esses assentamentos abrigam 7.579 famílias beneficiárias da reforma agrária em uma área de 491.851,6 ha.
Este atlas aponta aspectos relevantes para o entendimento das questões ambientais e de uso da terra da região. O leitor encontrará, além dos mapas dos municípios, informações demográficas, econômicas, sociais, dados dos sistemas agrários e dados temporais sobre a cobertura de vegetação nativa dos assentamentos. Essa caracterização serve para o Incra e para os beneficiários avançarem no processo de regularização ambiental das famílias atendidas pela reforma agrária.
Esperamos que esta publicação seja útil não só para pesquisadores, mas para técnicos, agricultores, tomadores de decisão, como fonte de consulta e base de informações para auxiliar nos processos de planejamento, gestão e uso do território, de forma a contribuir com a agenda de desenvolvimento dos assentamentos, integrando a produção de alimentos, o bem-estar das famílias, a geração de trabalho e de renda e a manutenção das funções ecossistêmicas do ambiente.
César Aldrighi
INCRA
Mário Lúcio de Ávila
FUP/Un
Dynamics of space and time of the production chain of the ceramic industry production center of Iranduba, Amazonas, Brazil
The objective of this study was to systematize a method that describes the dynamic processes that exist in space and time related to the production chain of the ceramic industry production center in Iranduba, Amazonas, Brazil, through the use of a mandala. A map of possible conditioning factors that can be characterized as links or problems related to the production chain was constructed, and this consisted of seven variables subdivided into three levels that stratify the descriptive steps of the processes of the production chain. A mandala was constructed in order to describe historical aspects of the ceramic industry production center in Iranduba, as well as to integrate biophysical and economic variables such as soil climate, energy sources used in the ceramic kilns, economic and financial variables, and specific characteristics of the ceramic industry production center. This method allowed for delineation of productive chain influences with the goal of improving the processes spatially and temporally. The results demonstrate that the structure of this method based on a mandala allows for an integral and systematic vision of these processes. It is therefore inferred that this is a practical tool which is integrated for making adjustments and new inclusions of techniques and procedures, remodeling the conditioning variables of production chains such as the one of the ceramic industry production center in Iranduba. The mandala is a tool that adjusts itself in time and space in a flexible way due to its capacity for interactive analysis in the construction of technical and scientific knowledge and dynamic and sustainable processes. © 2019 by the authors
A ética do silêncio racial no contexto urbano: políticas públicas e desigualdade social no Recife, 1900-1940
Mais de meio século após o preconceito racial ter se tornado o principal alvo dos movimentos urbanos pelos direitos civis nos Estados Unidos e na África do Sul, e décadas depois do surgimento dos movimentos negros contemporâneos no Brasil, o conjunto de ferramentas legislativas criado no Brasil para promover o direito à cidade ainda adere à longa tradição brasileira de silêncio acerca da questão racial. Este artigo propõe iniciar uma exploração das raízes históricas desse fenômeno, remontando ao surgimento do silêncio sobre a questão racial na política urbana do Recife, Brasil, durante a primeira metade do século XX. O Recife foi eé um exemplo paradigmático do processo pelo qual uma cidade amplamente marcada por traços negros e africanos chegou a ser definida política e legalmente como um espaço pobre, subdesenvolvido e racialmente neutro, onde as desigualdades sociais originaram na exclusão capitalista, e não na escravidão e nas ideologias do racismo científico. Neste sentido, Recife lança luzes sobre a política urbana que se gerou sob a sombra do silêncio racial.More than half a century after racial prejudice became central to urban civil rights movements in the United States and South Africa, and decades after the emergence of Brazil’s contemporary Black movements, Brazil's internationally recognized body of rights-to-the-city legislation still adheres to the country's long historical tradition of racial silence. This article explores the historical roots of this phenomenon by focusing on the emergence of racial silence in Recife, Brazil during the first half of the 20th Century. Recife was and remains a paradigmatic example of the process through which a city marked by its Black and African roots came to be legally and politically defined as a poor, underdeveloped and racially neutral space, where social inequalities derived from capitalist exclusion rather than from slavery and scientific racism. As such, Recife'sexperience sheds light on the urban policies that were generated in the shadow of racial silence
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost