140 research outputs found

    The University’s two vocations: centralizing research and development; decentralizing useful information

    Get PDF

    Bedside measurement of changes in lung impedance to monitor alveolar ventilation in dependent and non-dependent parts by electrical impedance tomography during a positive end-expiratory pressure trial in mechanically ventilated intensive care unit patients

    Get PDF
    Introduction: As it becomes clear that mechanical ventilation can exaggerate lung injury, individual titration of ventilator settings is of special interest. Electrical impedance tomography (EIT) has been proposed as a bedside, regional monitoring tool to guide these settings. In the present study we evaluate the use of ventilation distribution change maps (ΔfEIT maps) in intensive care unit (ICU) patients with or without lung disorders during a standardized decremental positive end-expiratory pressure (PEEP) trial.Methods: Functional EIT (fEIT) images and PaO2/FiO2ratios were obtained at four PEEP levels (15 to 10 to 5 to 0 cm H2O) in 14 ICU patients with or without lung disorders. Patients were pressure-controlled ventilated with constant driving pressure. fEIT images made before each reduction in PEEP were subtracted from those recorded after each PEEP step to evaluate regional increase/decrease in tidal impedance in each EIT pixel (ΔfEIT maps).Results: The response of regional tidal impedance to PEEP showed a significant difference from 15 to 10 (P = 0.002) and from 10 to 5 (P = 0.001) between patients with and without lung disorders. Tidal impedance increased only in the non-dependent parts in patients without lung disorders after decreasing PEEP from 15 to 10 cm H2O, whereas it decreased at the other PEEP steps in both groups.Conclusions: During a decremental PEEP trial in ICU patients, EIT measurements performed just above the diaphragm clearly visualize improvement and loss of ventilation in dependent and non-dependent parts, at the bedside in the individual patient

    End-expiratory lung volume during mechanical ventilation: a comparison with reference values and the effect of positive end-expiratory pressure in intensive care unit patients with different lung conditions

    Get PDF
    Introduction: Functional residual capacity (FRC) reference values are obtained from spontaneous breathing patients, and are measured in the sitting or standing position. During mechanical ventilation FRC is determined by the level of positive end-expiratory pressure (PEEP), and it is therefore better to speak of end-expiratory lung volume. Application of higher levels of PEEP leads to increased end-expiratory lung volume as a result of recruitment or further distention of already ventilated alveoli. The aim of this study was to measure end-expiratory lung volume in mechanically ventilated intensive care unit (ICU) patients with different types of lung pathology at different PEEP levels, and to compare them with predicted sitting FRC values, arterial oxygenation, and compliance values. Methods: End-expiratory lung volume measurements were performed at PEEP levels reduced sequentially (15, 10 and then 5 cmH2O) in 45 mechanically ventilated patients divided into three groups according to pulmonary condition: normal lungs (group N), primary lung disorder (group P), and secondary lung disorder (group S). Results: In all three groups, end-expiratory lung volume decreased significantly (P < 0.001) while PEEP decreased from 15 to 5 cmH2O, whereas the ratio of arterial oxygen tension to inspired oxygen fraction did not change. At 5 cmH2O PEEP, end-expiratory lung volume was 31, 20, and 17 ml/kg predicted body weight in groups N, P, and S, respectively. These measured values were only 66%, 42%, and 34% of the predicted sitting FRC. A correlation between change in end-expiratory lung volume and change in dynamic compliance was found in group S (P < 0.001; R2 = 0.52), but not in the other groups. Conclusions: End-expiratory lung volume measured at 5 cmH2O PEEP was markedly lower than predicted sitting FRC values in all groups. Only in patients with secondary lung disorders were PEEP-induced changes in end-expiratory lung volume the result of derecruitment. In combination with compliance, end-expiratory lung volume can provide additional information to optimize the ventilator settings

    Measuring the nursing workload per shift in the ICU

    Get PDF
    In the intensive care unit (ICU) different strategies and workload measurement tools exist to indicate the number of nurses needed. The gathered information is always focused on manpower needed per 24 h. However, a day consists of several shifts, which may be unequal in nursing workload. The aim of this study was to evaluate if differences in nursing workload between consecutive shifts can be identified by a nursing workload measurement tool. The nursing activities score (NAS) was registered per patient for every shift during a 4-week period in a prospective, observational research project in the surgical-pediatric ICU (SICU-PICU) and medical ICU (MICU) of an academic hospital. The NAS was influenced by the patient characteristics and the type of shift. Furthermore, the scores were lower during night shifts, in weekends and in MICU patients. Overall, the mean NAS per nurse per shift was 85.5 %, and the NAS per 24 h was 54.7 %. This study has shown that the nursing workload can be measured per working shift. In the ICU, the NAS differentiates the nursing workload between shifts, patients and units

    Clinical decision support for ExtraCorporeal Membrane Oxygenation:Will we fly by wire?

    Get PDF
    Prognostic modelling techniques have rapidly evolved over the past decade and may greatly benefit patients supported with ExtraCorporeal Membrane Oxygenation (ECMO). Epidemiological and computational physiological approaches aim to provide more accurate predictive assessments of ECMO-related risks and benefits. Implementation of these approaches may produce predictive tools that can improve complex clinical decisions surrounding ECMO allocation and management. This Review describes current applications of prognostic models and elaborates on upcoming directions for their clinical applicability in decision support tools directed at improved allocation and management of ECMO patients. The discussion of these new developments in the field will culminate in a futuristic perspective leaving ourselves and the readers wondering whether we may “fly ECMO by wire” someday.</p

    A nationwide overview of 1-year mortality in cardiac arrest patients admitted to intensive care units in the Netherlands between 2010 and 2016

    Get PDF
    Aim: Worldwide, cardiac arrest (CA) remains a major cause of death. Most post-CA patients are admitted to the intensive care unit (ICU). The aim of this study is to describe mortality rates and possible changes in mortality rates in patients with CA admitted to the ICU in the Netherlands between 2010 and 2016. Methods: In this study, we included all adult CA patients registered in the National Intensive Care Evaluation (NICE) regist

    The effect of open lung ventilation on right ventricular and left ventricular function in lung-lavaged pigs

    Get PDF
    INTRODUCTION: Ventilation according to the open lung concept (OLC) consists of recruitment maneuvers, followed by low tidal volume and high positive end-expiratory pressure, aiming at minimizing atelectasis. The minimization of atelectasis reduces the right ventricular (RV) afterload, but the increased intrathoracic pressures used by OLC ventilation could increase the RV afterload. We hypothesize that when atelectasis is minimized by OLC ventilation, cardiac function is not affected despite the higher mean airway pressure. METHODS: After repeated lung lavage, each pig (n = 10) was conventionally ventilated and was ventilated according to OLC in a randomized cross-over setting. Conventional mechanical ventilation (CMV) consisted of volume-controlled ventilation with 5 cmH2O positive end-expiratory pressure and a tidal volume of 8-10 ml/kg. No recruitment maneuvers were performed. During OLC ventilation, recruitment maneuvers were applied until PaO2/FiO2 > 60 kPa. The peak inspiratory pressure was set to obtain a tidal volume of 6-8 ml/kg. The cardiac output (CO), th
    • …
    corecore