30 research outputs found
Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017
A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic
Recommended from our members
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. METHODS The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. FINDINGS The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. INTERPRETATION Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. FUNDING Bill & Melinda Gates Foundation
Animal response to grazing on reclaimed mine tailings
In 1994 and 1995, 32 cow/calf pairs were grazed on molybdenum (Mo) enriched herbage (21-65 mg kg"¹ DM) for a 12 week period at a reclaimed mine site located at the Highland Valley Copper Mine near Logan Lake, British Columbia. The scientific literature indicates that feedstuffs with high levels of Mo (>10 ppm) may induce a copper (Cu) deficiency in ruminants (referred to as molybdenosis), which results in poor animal health and productivity and may result in death of affected animals. This study was undertaken to evaluate the efficacy of grazing cattle on Mo enriched forage on reclaimed mine tailings, with or without an All-Trace copper-enriched bolus supplement, and its effects on Cu and Mo levels in milk, blood and liver tissue. Weight gains and health were normal for all the animals and no visual signs of a Mo induced Cu deficiency were observed. Serum Cu concentrations remained in the normal range of 0.7 to 1.5 ug ml"¹ and did not differ (P<0.05) for the supplemented and control groups for cows or calves in either year. Liver tissue Cu concentration increased in the Cu supplemented cows and calves for the first sampling period after treatment but was in the normal range throughout the remainder of the season for both treatment groups. Copper supplementation did not affect the concentrations of Mo in the serum, liver tissue, or milk; however, Mo did accumulate linearly in these components throughout the grazing period. Our results to date suggest that prolonged periods of Mo-enriched herbage consumption will result in increased concentrations of Mo in the serum and liver tissue of cows and calves but this may not result in molybdenosis when the Cu requirements of the animals are met. Supplementing animals with Cu-enriched boli enhanced liver Cu storage, while the effects on serum and milk Cu were minimal.Non UBCUnreviewedOthe
Effect of conjugated linoleic acids from beef or industrial hydrogenation on growth and adipose tissue characteristics of rats
Abstract Background The conjugated linoleic acid (CLA) content of beef can be increased by supplementing appropriate beef cattle diets with vegetable oil or oil seed. Yet the effect of consumption of such beef on adipose tissue characteristics is unclear, thus the study was conducted to compare adipose tissue responses of rats to diets containing beef from steers either not provided or provided the oil supplements to alter CLA composition of the fat in muscle. Methods Effects of feeding synthetic (industrial hydrogenation) CLA or CLA from beef on growth and adipose tissue responses of weanling, male, Wistar rats (n = 56; 14 per treatment diet) were investigated in a completely randomized design experiment. Diets were: control (CON) diet containing casein and soybean oil, synthetic CLA (SCLA) diet; where 1.69% synthetic CLA replaced soybean oil, two beef-diets; CONM and CLAM, containing freeze dried beef from steers either not fed or fed 14% sunflower seeds to increase CLA content of beef. Diets were isonitrogenous (20% protein) and isocaloric. Rat weights and ad libitum intakes were recorded every 2 wk. After 9 wk, rats were fasted for 24 h, blood sampled by heart puncture, sacrificed, tissue and organs were harvested and weights recorded. The adipose tissue responses with regard to cellularity and fatty acid compositions of retroperitoneal and inguinal adipose tissue were determined. Results Body weights and gains were comparable, but organ weights as percent of body weight were greater for rats fed SCLA than CONM. Fasting blood glucose concentration was lower (p 7 cells/g and 8.03 × 108 cells) than those fed CONM (28.88 × 107 cells/g and 32.05 × 108 cells, respectively). Conclusion Study suggests that dietary CLA either as synthetic or high CLA-beef may alter adipose tissue characteristics by decreasing the number of adipocytes and by decreasing the size of the tissue.</p
Effects of feeding high molybdenum hay to mature beef steers
A 3X3 latin square design experiment was used to study the
effects of feeding high molybdenum (Mo) hay, from Highland Valley
Copper, to three cannulated Hereford steers. Supplement
treatments were; no supplement, copper oxide needles (CuOn) and
copper oxide bolus. Feed intakes, mineral content of feed, dry
matter and nutrient digestibilities, supplement disappearance
from the rumen and copper (Cu) concentrations in the blood were
monitored. Hay from Highland Valley Copper was high Cu (19.09
ppm), high Mo (49.68 ppm) feed. Severe cases of molybdenosis
were expected but did not develop in cattle. Feeding harvested
sun-cured high Mo forage lessens the hazard of molybdenosis. The
Cu supplements had little or no effect on dry matter or nutrient
digestibilities nor on rumen metabolism. Cu concentrations in
the blood were increased. Research grazing fresh forage is
required before making conclusive recommendations for using mine
waste dumps and tailings ponds for forage production.Non UBCUnreviewedOthe
Claudin-17 Deficiency in Mice Results in Kidney Injury Due to Electrolyte Imbalance and Oxidative Stress
The multi-gene claudin (CLDN) family of tight junction proteins have isoform-specific roles in blood–tissue barrier regulation. CLDN17, a putative anion pore-forming CLDN based on its structural characterization, is assumed to regulate anion balance across the blood-tissue barriers. However, our knowledge about CLDN17 in physiology and pathology is limited. The current study investigated how Cldn17 deficiency in mice affects blood electrolytes and kidney structure. Cldn17−/− mice revealed no breeding abnormalities, but the newborn pups exhibited delayed growth. Adult Cldn17−/− mice displayed electrolyte imbalance, oxidative stress, and injury to the kidneys. Ingenuity pathway analysis followed by RNA-sequencing revealed hyperactivation of signaling pathways and downregulation of SOD1 expression in kidneys associated with inflammation and reactive oxygen species generation, demonstrating the importance of Cldn17 in the maintenance of electrolytes and reactive oxygen species across the blood-tissue barrier